Metamath Proof Explorer


Theorem odmulgeq

Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X = Base G
odmulgid.2 O = od G
odmulgid.3 · ˙ = G
Assertion odmulgeq G Grp A X N O A O N · ˙ A = O A N gcd O A = 1

Proof

Step Hyp Ref Expression
1 odmulgid.1 X = Base G
2 odmulgid.2 O = od G
3 odmulgid.3 · ˙ = G
4 eqcom O N · ˙ A = O A O A = O N · ˙ A
5 simpl2 G Grp A X N O A A X
6 1 2 odcl A X O A 0
7 5 6 syl G Grp A X N O A O A 0
8 7 nn0cnd G Grp A X N O A O A
9 simpl1 G Grp A X N O A G Grp
10 simpl3 G Grp A X N O A N
11 1 3 mulgcl G Grp N A X N · ˙ A X
12 9 10 5 11 syl3anc G Grp A X N O A N · ˙ A X
13 1 2 odcl N · ˙ A X O N · ˙ A 0
14 12 13 syl G Grp A X N O A O N · ˙ A 0
15 14 nn0cnd G Grp A X N O A O N · ˙ A
16 nnne0 O A O A 0
17 16 adantl G Grp A X N O A O A 0
18 1 2 3 odmulg2 G Grp A X N O N · ˙ A O A
19 18 adantr G Grp A X N O A O N · ˙ A O A
20 breq1 O N · ˙ A = 0 O N · ˙ A O A 0 O A
21 19 20 syl5ibcom G Grp A X N O A O N · ˙ A = 0 0 O A
22 7 nn0zd G Grp A X N O A O A
23 0dvds O A 0 O A O A = 0
24 22 23 syl G Grp A X N O A 0 O A O A = 0
25 21 24 sylibd G Grp A X N O A O N · ˙ A = 0 O A = 0
26 25 necon3d G Grp A X N O A O A 0 O N · ˙ A 0
27 17 26 mpd G Grp A X N O A O N · ˙ A 0
28 8 15 27 diveq1ad G Grp A X N O A O A O N · ˙ A = 1 O A = O N · ˙ A
29 10 22 gcdcld G Grp A X N O A N gcd O A 0
30 29 nn0cnd G Grp A X N O A N gcd O A
31 15 30 mulcomd G Grp A X N O A O N · ˙ A N gcd O A = N gcd O A O N · ˙ A
32 1 2 3 odmulg G Grp A X N O A = N gcd O A O N · ˙ A
33 32 adantr G Grp A X N O A O A = N gcd O A O N · ˙ A
34 31 33 eqtr4d G Grp A X N O A O N · ˙ A N gcd O A = O A
35 8 15 30 27 divmuld G Grp A X N O A O A O N · ˙ A = N gcd O A O N · ˙ A N gcd O A = O A
36 34 35 mpbird G Grp A X N O A O A O N · ˙ A = N gcd O A
37 36 eqeq1d G Grp A X N O A O A O N · ˙ A = 1 N gcd O A = 1
38 28 37 bitr3d G Grp A X N O A O A = O N · ˙ A N gcd O A = 1
39 4 38 syl5bb G Grp A X N O A O N · ˙ A = O A N gcd O A = 1