| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odmulgid.1 |
|
| 2 |
|
odmulgid.2 |
|
| 3 |
|
odmulgid.3 |
|
| 4 |
|
eqcom |
|
| 5 |
|
simpl2 |
|
| 6 |
1 2
|
odcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
nn0cnd |
|
| 9 |
|
simpl1 |
|
| 10 |
|
simpl3 |
|
| 11 |
1 3
|
mulgcl |
|
| 12 |
9 10 5 11
|
syl3anc |
|
| 13 |
1 2
|
odcl |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
nn0cnd |
|
| 16 |
|
nnne0 |
|
| 17 |
16
|
adantl |
|
| 18 |
1 2 3
|
odmulg2 |
|
| 19 |
18
|
adantr |
|
| 20 |
|
breq1 |
|
| 21 |
19 20
|
syl5ibcom |
|
| 22 |
7
|
nn0zd |
|
| 23 |
|
0dvds |
|
| 24 |
22 23
|
syl |
|
| 25 |
21 24
|
sylibd |
|
| 26 |
25
|
necon3d |
|
| 27 |
17 26
|
mpd |
|
| 28 |
8 15 27
|
diveq1ad |
|
| 29 |
10 22
|
gcdcld |
|
| 30 |
29
|
nn0cnd |
|
| 31 |
15 30
|
mulcomd |
|
| 32 |
1 2 3
|
odmulg |
|
| 33 |
32
|
adantr |
|
| 34 |
31 33
|
eqtr4d |
|
| 35 |
8 15 30 27
|
divmuld |
|
| 36 |
34 35
|
mpbird |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
28 37
|
bitr3d |
|
| 39 |
4 38
|
bitrid |
|