Metamath Proof Explorer


Theorem odmulgid

Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odmulgid.1 X = Base G
odmulgid.2 O = od G
odmulgid.3 · ˙ = G
Assertion odmulgid G Grp A X N K O N · ˙ A K O A K N

Proof

Step Hyp Ref Expression
1 odmulgid.1 X = Base G
2 odmulgid.2 O = od G
3 odmulgid.3 · ˙ = G
4 simpl1 G Grp A X N K G Grp
5 simpr G Grp A X N K K
6 simpl3 G Grp A X N K N
7 simpl2 G Grp A X N K A X
8 1 3 mulgass G Grp K N A X K N · ˙ A = K · ˙ N · ˙ A
9 4 5 6 7 8 syl13anc G Grp A X N K K N · ˙ A = K · ˙ N · ˙ A
10 9 eqeq1d G Grp A X N K K N · ˙ A = 0 G K · ˙ N · ˙ A = 0 G
11 5 6 zmulcld G Grp A X N K K N
12 eqid 0 G = 0 G
13 1 2 3 12 oddvds G Grp A X K N O A K N K N · ˙ A = 0 G
14 4 7 11 13 syl3anc G Grp A X N K O A K N K N · ˙ A = 0 G
15 1 3 mulgcl G Grp N A X N · ˙ A X
16 4 6 7 15 syl3anc G Grp A X N K N · ˙ A X
17 1 2 3 12 oddvds G Grp N · ˙ A X K O N · ˙ A K K · ˙ N · ˙ A = 0 G
18 4 16 5 17 syl3anc G Grp A X N K O N · ˙ A K K · ˙ N · ˙ A = 0 G
19 10 14 18 3bitr4rd G Grp A X N K O N · ˙ A K O A K N