Metamath Proof Explorer


Theorem odrngbas

Description: The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
Assertion odrngbas B V B = Base W

Proof

Step Hyp Ref Expression
1 odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
2 1 odrngstr W Struct 1 12
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ W
7 4 6 sstri Base ndx B W
8 2 3 7 strfv B V B = Base W