Metamath Proof Explorer


Theorem odrngds

Description: The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
Assertion odrngds D V D = dist W

Proof

Step Hyp Ref Expression
1 odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
2 1 odrngstr W Struct 1 12
3 dsid dist = Slot dist ndx
4 snsstp3 dist ndx D TopSet ndx J ndx ˙ dist ndx D
5 ssun2 TopSet ndx J ndx ˙ dist ndx D Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
6 5 1 sseqtrri TopSet ndx J ndx ˙ dist ndx D W
7 4 6 sstri dist ndx D W
8 2 3 7 strfv D V D = dist W