Metamath Proof Explorer


Theorem odrngmulr

Description: The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
Assertion odrngmulr · ˙ V · ˙ = W

Proof

Step Hyp Ref Expression
1 odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
2 1 odrngstr W Struct 1 12
3 mulrid 𝑟 = Slot ndx
4 snsstp3 ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ W
7 4 6 sstri ndx · ˙ W
8 2 3 7 strfv · ˙ V · ˙ = W