Metamath Proof Explorer


Theorem odrngplusg

Description: The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
Assertion odrngplusg + ˙ V + ˙ = + W

Proof

Step Hyp Ref Expression
1 odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
2 1 odrngstr W Struct 1 12
3 plusgid + 𝑔 = Slot + ndx
4 snsstp2 + ndx + ˙ Base ndx B + ndx + ˙ ndx · ˙
5 ssun1 Base ndx B + ndx + ˙ ndx · ˙ Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
6 5 1 sseqtrri Base ndx B + ndx + ˙ ndx · ˙ W
7 4 6 sstri + ndx + ˙ W
8 2 3 7 strfv + ˙ V + ˙ = + W