Metamath Proof Explorer


Theorem odrngstr

Description: Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypothesis odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
Assertion odrngstr W Struct 1 12

Proof

Step Hyp Ref Expression
1 odrngstr.w W = Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D
2 eqid Base ndx B + ndx + ˙ ndx · ˙ = Base ndx B + ndx + ˙ ndx · ˙
3 2 rngstr Base ndx B + ndx + ˙ ndx · ˙ Struct 1 3
4 9nn 9
5 tsetndx TopSet ndx = 9
6 9lt10 9 < 10
7 10nn 10
8 plendx ndx = 10
9 1nn0 1 0
10 0nn0 0 0
11 2nn 2
12 2pos 0 < 2
13 9 10 11 12 declt 10 < 12
14 9 11 decnncl 12
15 dsndx dist ndx = 12
16 4 5 6 7 8 13 14 15 strle3 TopSet ndx J ndx ˙ dist ndx D Struct 9 12
17 3lt9 3 < 9
18 3 16 17 strleun Base ndx B + ndx + ˙ ndx · ˙ TopSet ndx J ndx ˙ dist ndx D Struct 1 12
19 1 18 eqbrtri W Struct 1 12