Database
BASIC STRUCTURES
Extensible structures
Slot definitions
odrngtset
Next ⟩
odrngle
Metamath Proof Explorer
Ascii
Unicode
Theorem
odrngtset
Description:
The open sets of an ordered metric ring.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Hypothesis
odrngstr.w
⊢
W
=
Base
ndx
B
+
ndx
+
˙
⋅
ndx
·
˙
∪
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
Assertion
odrngtset
⊢
J
∈
V
→
J
=
TopSet
⁡
W
Proof
Step
Hyp
Ref
Expression
1
odrngstr.w
⊢
W
=
Base
ndx
B
+
ndx
+
˙
⋅
ndx
·
˙
∪
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
2
1
odrngstr
⊢
W
Struct
1
12
3
tsetid
⊢
TopSet
=
Slot
TopSet
⁡
ndx
4
snsstp1
⊢
TopSet
⁡
ndx
J
⊆
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
5
ssun2
⊢
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
⊆
Base
ndx
B
+
ndx
+
˙
⋅
ndx
·
˙
∪
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
6
5
1
sseqtrri
⊢
TopSet
⁡
ndx
J
≤
ndx
≤
˙
dist
⁡
ndx
D
⊆
W
7
4
6
sstri
⊢
TopSet
⁡
ndx
J
⊆
W
8
2
3
7
strfv
⊢
J
∈
V
→
J
=
TopSet
⁡
W