Metamath Proof Explorer


Theorem odubas

Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D = ODual O
odubas.b B = Base O
Assertion odubas B = Base D

Proof

Step Hyp Ref Expression
1 oduval.d D = ODual O
2 odubas.b B = Base O
3 baseid Base = Slot Base ndx
4 1re 1
5 1lt10 1 < 10
6 4 5 ltneii 1 10
7 basendx Base ndx = 1
8 plendx ndx = 10
9 7 8 neeq12i Base ndx ndx 1 10
10 6 9 mpbir Base ndx ndx
11 3 10 setsnid Base O = Base O sSet ndx O -1
12 eqid O = O
13 1 12 oduval D = O sSet ndx O -1
14 13 fveq2i Base D = Base O sSet ndx O -1
15 11 2 14 3eqtr4i B = Base D