Database
BASIC ORDER THEORY
Dual of an order structure
odubas
Next ⟩
Preordered sets and directed sets
Metamath Proof Explorer
Ascii
Unicode
Theorem
odubas
Description:
Base set of an order dual structure.
(Contributed by
Stefan O'Rear
, 29-Jan-2015)
Ref
Expression
Hypotheses
oduval.d
⊢
D
=
ODual
⁡
O
odubas.b
⊢
B
=
Base
O
Assertion
odubas
⊢
B
=
Base
D
Proof
Step
Hyp
Ref
Expression
1
oduval.d
⊢
D
=
ODual
⁡
O
2
odubas.b
⊢
B
=
Base
O
3
baseid
⊢
Base
=
Slot
Base
ndx
4
1re
⊢
1
∈
ℝ
5
1lt10
⊢
1
<
10
6
4
5
ltneii
⊢
1
≠
10
7
basendx
⊢
Base
ndx
=
1
8
plendx
⊢
≤
ndx
=
10
9
7
8
neeq12i
⊢
Base
ndx
≠
≤
ndx
↔
1
≠
10
10
6
9
mpbir
⊢
Base
ndx
≠
≤
ndx
11
3
10
setsnid
⊢
Base
O
=
Base
O
sSet
≤
ndx
≤
O
-1
12
eqid
⊢
≤
O
=
≤
O
13
1
12
oduval
⊢
D
=
O
sSet
≤
ndx
≤
O
-1
14
13
fveq2i
⊢
Base
D
=
Base
O
sSet
≤
ndx
≤
O
-1
15
11
2
14
3eqtr4i
⊢
B
=
Base
D