Metamath Proof Explorer


Theorem oduclatb

Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis oduclatb.d D=ODualO
Assertion oduclatb OCLatDCLat

Proof

Step Hyp Ref Expression
1 oduclatb.d D=ODualO
2 elex OCLatOV
3 noel ¬lub
4 ssid
5 base0 =Base
6 eqid lub=lub
7 5 6 clatlubcl CLatlub
8 4 7 mpan2 CLatlub
9 3 8 mto ¬CLat
10 fvprc ¬OVODualO=
11 1 10 eqtrid ¬OVD=
12 11 eleq1d ¬OVDCLatCLat
13 9 12 mtbiri ¬OV¬DCLat
14 13 con4i DCLatOV
15 1 oduposb OVOPosetDPoset
16 ancom domlubO=𝒫BaseOdomglbO=𝒫BaseOdomglbO=𝒫BaseOdomlubO=𝒫BaseO
17 eqid glbO=glbO
18 1 17 odulub OVglbO=lubD
19 18 dmeqd OVdomglbO=domlubD
20 19 eqeq1d OVdomglbO=𝒫BaseOdomlubD=𝒫BaseO
21 eqid lubO=lubO
22 1 21 oduglb OVlubO=glbD
23 22 dmeqd OVdomlubO=domglbD
24 23 eqeq1d OVdomlubO=𝒫BaseOdomglbD=𝒫BaseO
25 20 24 anbi12d OVdomglbO=𝒫BaseOdomlubO=𝒫BaseOdomlubD=𝒫BaseOdomglbD=𝒫BaseO
26 16 25 bitrid OVdomlubO=𝒫BaseOdomglbO=𝒫BaseOdomlubD=𝒫BaseOdomglbD=𝒫BaseO
27 15 26 anbi12d OVOPosetdomlubO=𝒫BaseOdomglbO=𝒫BaseODPosetdomlubD=𝒫BaseOdomglbD=𝒫BaseO
28 eqid BaseO=BaseO
29 28 21 17 isclat OCLatOPosetdomlubO=𝒫BaseOdomglbO=𝒫BaseO
30 1 28 odubas BaseO=BaseD
31 eqid lubD=lubD
32 eqid glbD=glbD
33 30 31 32 isclat DCLatDPosetdomlubD=𝒫BaseOdomglbD=𝒫BaseO
34 27 29 33 3bitr4g OVOCLatDCLat
35 2 14 34 pm5.21nii OCLatDCLat