Metamath Proof Explorer


Theorem oduclatb

Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis oduclatb.d D = ODual O
Assertion oduclatb O CLat D CLat

Proof

Step Hyp Ref Expression
1 oduclatb.d D = ODual O
2 elex O CLat O V
3 noel ¬ lub
4 ssid
5 base0 = Base
6 eqid lub = lub
7 5 6 clatlubcl CLat lub
8 4 7 mpan2 CLat lub
9 3 8 mto ¬ CLat
10 fvprc ¬ O V ODual O =
11 1 10 eqtrid ¬ O V D =
12 11 eleq1d ¬ O V D CLat CLat
13 9 12 mtbiri ¬ O V ¬ D CLat
14 13 con4i D CLat O V
15 1 oduposb O V O Poset D Poset
16 ancom dom lub O = 𝒫 Base O dom glb O = 𝒫 Base O dom glb O = 𝒫 Base O dom lub O = 𝒫 Base O
17 eqid glb O = glb O
18 1 17 odulub O V glb O = lub D
19 18 dmeqd O V dom glb O = dom lub D
20 19 eqeq1d O V dom glb O = 𝒫 Base O dom lub D = 𝒫 Base O
21 eqid lub O = lub O
22 1 21 oduglb O V lub O = glb D
23 22 dmeqd O V dom lub O = dom glb D
24 23 eqeq1d O V dom lub O = 𝒫 Base O dom glb D = 𝒫 Base O
25 20 24 anbi12d O V dom glb O = 𝒫 Base O dom lub O = 𝒫 Base O dom lub D = 𝒫 Base O dom glb D = 𝒫 Base O
26 16 25 syl5bb O V dom lub O = 𝒫 Base O dom glb O = 𝒫 Base O dom lub D = 𝒫 Base O dom glb D = 𝒫 Base O
27 15 26 anbi12d O V O Poset dom lub O = 𝒫 Base O dom glb O = 𝒫 Base O D Poset dom lub D = 𝒫 Base O dom glb D = 𝒫 Base O
28 eqid Base O = Base O
29 28 21 17 isclat O CLat O Poset dom lub O = 𝒫 Base O dom glb O = 𝒫 Base O
30 1 28 odubas Base O = Base D
31 eqid lub D = lub D
32 eqid glb D = glb D
33 30 31 32 isclat D CLat D Poset dom lub D = 𝒫 Base O dom glb D = 𝒫 Base O
34 27 29 33 3bitr4g O V O CLat D CLat
35 2 14 34 pm5.21nii O CLat D CLat