Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oduclatb.d | |
|
Assertion | oduclatb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oduclatb.d | |
|
2 | elex | |
|
3 | noel | |
|
4 | ssid | |
|
5 | base0 | |
|
6 | eqid | |
|
7 | 5 6 | clatlubcl | |
8 | 4 7 | mpan2 | |
9 | 3 8 | mto | |
10 | fvprc | |
|
11 | 1 10 | eqtrid | |
12 | 11 | eleq1d | |
13 | 9 12 | mtbiri | |
14 | 13 | con4i | |
15 | 1 | oduposb | |
16 | ancom | |
|
17 | eqid | |
|
18 | 1 17 | odulub | |
19 | 18 | dmeqd | |
20 | 19 | eqeq1d | |
21 | eqid | |
|
22 | 1 21 | oduglb | |
23 | 22 | dmeqd | |
24 | 23 | eqeq1d | |
25 | 20 24 | anbi12d | |
26 | 16 25 | bitrid | |
27 | 15 26 | anbi12d | |
28 | eqid | |
|
29 | 28 21 17 | isclat | |
30 | 1 28 | odubas | |
31 | eqid | |
|
32 | eqid | |
|
33 | 30 31 32 | isclat | |
34 | 27 29 33 | 3bitr4g | |
35 | 2 14 34 | pm5.21nii | |