Metamath Proof Explorer


Theorem odudlatb

Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis odudlat.d D = ODual K
Assertion odudlatb K V K DLat D DLat

Proof

Step Hyp Ref Expression
1 odudlat.d D = ODual K
2 eqid Base K = Base K
3 eqid join K = join K
4 eqid meet K = meet K
5 2 3 4 latdisd K Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z
6 5 bicomd K Lat x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z
7 6 pm5.32i K Lat x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z K Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z
8 1 odulatb K V K Lat D Lat
9 8 anbi1d K V K Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z D Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z
10 7 9 syl5bb K V K Lat x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z D Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z
11 2 3 4 isdlat K DLat K Lat x Base K y Base K z Base K x meet K y join K z = x meet K y join K x meet K z
12 1 2 odubas Base K = Base D
13 1 4 odujoin meet K = join D
14 1 3 odumeet join K = meet D
15 12 13 14 isdlat D DLat D Lat x Base K y Base K z Base K x join K y meet K z = x join K y meet K x join K z
16 10 11 15 3bitr4g K V K DLat D DLat