Metamath Proof Explorer


Theorem odulatb

Description: Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis odulat.d D = ODual O
Assertion odulatb O V O Lat D Lat

Proof

Step Hyp Ref Expression
1 odulat.d D = ODual O
2 1 oduposb O V O Poset D Poset
3 ancom dom join O = Base O × Base O dom meet O = Base O × Base O dom meet O = Base O × Base O dom join O = Base O × Base O
4 3 a1i O V dom join O = Base O × Base O dom meet O = Base O × Base O dom meet O = Base O × Base O dom join O = Base O × Base O
5 2 4 anbi12d O V O Poset dom join O = Base O × Base O dom meet O = Base O × Base O D Poset dom meet O = Base O × Base O dom join O = Base O × Base O
6 eqid Base O = Base O
7 eqid join O = join O
8 eqid meet O = meet O
9 6 7 8 islat O Lat O Poset dom join O = Base O × Base O dom meet O = Base O × Base O
10 1 6 odubas Base O = Base D
11 1 8 odujoin meet O = join D
12 1 7 odumeet join O = meet D
13 10 11 12 islat D Lat D Poset dom meet O = Base O × Base O dom join O = Base O × Base O
14 5 9 13 3bitr4g O V O Lat D Lat