Database
BASIC ORDER THEORY
Lattices
Lattices
odulatb
Next ⟩
odulat
Metamath Proof Explorer
Ascii
Unicode
Theorem
odulatb
Description:
Being a lattice is self-dual.
(Contributed by
Stefan O'Rear
, 29-Jan-2015)
Ref
Expression
Hypothesis
odulat.d
⊢
D
=
ODual
⁡
O
Assertion
odulatb
⊢
O
∈
V
→
O
∈
Lat
↔
D
∈
Lat
Proof
Step
Hyp
Ref
Expression
1
odulat.d
⊢
D
=
ODual
⁡
O
2
1
oduposb
⊢
O
∈
V
→
O
∈
Poset
↔
D
∈
Poset
3
ancom
⊢
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
↔
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
4
3
a1i
⊢
O
∈
V
→
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
↔
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
5
2
4
anbi12d
⊢
O
∈
V
→
O
∈
Poset
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
↔
D
∈
Poset
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
6
eqid
⊢
Base
O
=
Base
O
7
eqid
⊢
join
⁡
O
=
join
⁡
O
8
eqid
⊢
meet
⁡
O
=
meet
⁡
O
9
6
7
8
islat
⊢
O
∈
Lat
↔
O
∈
Poset
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
10
1
6
odubas
⊢
Base
O
=
Base
D
11
1
8
odujoin
⊢
meet
⁡
O
=
join
⁡
D
12
1
7
odumeet
⊢
join
⁡
O
=
meet
⁡
D
13
10
11
12
islat
⊢
D
∈
Lat
↔
D
∈
Poset
∧
dom
⁡
meet
⁡
O
=
Base
O
×
Base
O
∧
dom
⁡
join
⁡
O
=
Base
O
×
Base
O
14
5
9
13
3bitr4g
⊢
O
∈
V
→
O
∈
Lat
↔
D
∈
Lat