Metamath Proof Explorer


Theorem oduleg

Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D = ODual O
oduval.l ˙ = O
oduleg.g G = D
Assertion oduleg A V B W A G B B ˙ A

Proof

Step Hyp Ref Expression
1 oduval.d D = ODual O
2 oduval.l ˙ = O
3 oduleg.g G = D
4 1 2 oduleval ˙ -1 = D
5 3 4 eqtr4i G = ˙ -1
6 5 breqi A G B A ˙ -1 B
7 brcnvg A V B W A ˙ -1 B B ˙ A
8 6 7 syl5bb A V B W A G B B ˙ A