Metamath Proof Explorer


Theorem odupos

Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis odupos.d D = ODual O
Assertion odupos O Poset D Poset

Proof

Step Hyp Ref Expression
1 odupos.d D = ODual O
2 1 fvexi D V
3 2 a1i O Poset D V
4 eqid Base O = Base O
5 1 4 odubas Base O = Base D
6 5 a1i O Poset Base O = Base D
7 eqid O = O
8 1 7 oduleval O -1 = D
9 8 a1i O Poset O -1 = D
10 4 7 posref O Poset a Base O a O a
11 vex a V
12 11 11 brcnv a O -1 a a O a
13 10 12 sylibr O Poset a Base O a O -1 a
14 vex b V
15 11 14 brcnv a O -1 b b O a
16 14 11 brcnv b O -1 a a O b
17 15 16 anbi12ci a O -1 b b O -1 a a O b b O a
18 4 7 posasymb O Poset a Base O b Base O a O b b O a a = b
19 18 biimpd O Poset a Base O b Base O a O b b O a a = b
20 17 19 syl5bi O Poset a Base O b Base O a O -1 b b O -1 a a = b
21 3anrev a Base O b Base O c Base O c Base O b Base O a Base O
22 4 7 postr O Poset c Base O b Base O a Base O c O b b O a c O a
23 21 22 sylan2b O Poset a Base O b Base O c Base O c O b b O a c O a
24 vex c V
25 14 24 brcnv b O -1 c c O b
26 15 25 anbi12ci a O -1 b b O -1 c c O b b O a
27 11 24 brcnv a O -1 c c O a
28 23 26 27 3imtr4g O Poset a Base O b Base O c Base O a O -1 b b O -1 c a O -1 c
29 3 6 9 13 20 28 isposd O Poset D Poset