Metamath Proof Explorer


Theorem oduposb

Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis odupos.d D = ODual O
Assertion oduposb O V O Poset D Poset

Proof

Step Hyp Ref Expression
1 odupos.d D = ODual O
2 1 odupos O Poset D Poset
3 eqid ODual D = ODual D
4 3 odupos D Poset ODual D Poset
5 fvexd O V ODual D V
6 id O V O V
7 eqid Base O = Base O
8 1 7 odubas Base O = Base D
9 3 8 odubas Base O = Base ODual D
10 9 a1i O V Base O = Base ODual D
11 eqidd O V Base O = Base O
12 eqid O = O
13 1 12 oduleval O -1 = D
14 3 13 oduleval O -1 -1 = ODual D
15 14 eqcomi ODual D = O -1 -1
16 15 breqi a ODual D b a O -1 -1 b
17 vex a V
18 vex b V
19 17 18 brcnv a O -1 -1 b b O -1 a
20 18 17 brcnv b O -1 a a O b
21 16 19 20 3bitri a ODual D b a O b
22 21 a1i O V a Base O b Base O a ODual D b a O b
23 5 6 10 11 22 pospropd O V ODual D Poset O Poset
24 4 23 syl5ib O V D Poset O Poset
25 2 24 impbid2 O V O Poset D Poset