Metamath Proof Explorer


Theorem oduval

Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D = ODual O
oduval.l ˙ = O
Assertion oduval D = O sSet ndx ˙ -1

Proof

Step Hyp Ref Expression
1 oduval.d D = ODual O
2 oduval.l ˙ = O
3 id a = O a = O
4 fveq2 a = O a = O
5 4 cnveqd a = O a -1 = O -1
6 5 opeq2d a = O ndx a -1 = ndx O -1
7 3 6 oveq12d a = O a sSet ndx a -1 = O sSet ndx O -1
8 df-odu ODual = a V a sSet ndx a -1
9 ovex O sSet ndx O -1 V
10 7 8 9 fvmpt O V ODual O = O sSet ndx O -1
11 fvprc ¬ O V ODual O =
12 reldmsets Rel dom sSet
13 12 ovprc1 ¬ O V O sSet ndx O -1 =
14 11 13 eqtr4d ¬ O V ODual O = O sSet ndx O -1
15 10 14 pm2.61i ODual O = O sSet ndx O -1
16 2 cnveqi ˙ -1 = O -1
17 16 opeq2i ndx ˙ -1 = ndx O -1
18 17 oveq2i O sSet ndx ˙ -1 = O sSet ndx O -1
19 15 1 18 3eqtr4i D = O sSet ndx ˙ -1