Metamath Proof Explorer


Theorem odzid

Description: Any element raised to the power of its order is 1 . (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzid N A A gcd N = 1 N A od N A 1

Proof

Step Hyp Ref Expression
1 odzcllem N A A gcd N = 1 od N A N A od N A 1
2 1 simprd N A A gcd N = 1 N A od N A 1