| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 | 1 | eqeq1d |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 3 | eqeq1d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 5 | eqeq1d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 | 7 | eqeq1d |  | 
						
							| 9 |  | 1on |  | 
						
							| 10 |  | oe0 |  | 
						
							| 11 | 9 10 | ax-mp |  | 
						
							| 12 |  | oesuc |  | 
						
							| 13 | 9 12 | mpan |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 |  | om1 |  | 
						
							| 16 | 9 15 | ax-mp |  | 
						
							| 17 | 14 16 | eqtrdi |  | 
						
							| 18 | 13 17 | sylan9eq |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 |  | iuneq2 |  | 
						
							| 21 |  | vex |  | 
						
							| 22 |  | 0lt1o |  | 
						
							| 23 |  | oelim |  | 
						
							| 24 | 22 23 | mpan2 |  | 
						
							| 25 | 9 24 | mpan |  | 
						
							| 26 | 21 25 | mpan |  | 
						
							| 27 | 26 | eqeq1d |  | 
						
							| 28 |  | 0ellim |  | 
						
							| 29 |  | ne0i |  | 
						
							| 30 |  | iunconst |  | 
						
							| 31 | 28 29 30 | 3syl |  | 
						
							| 32 | 31 | eqeq2d |  | 
						
							| 33 | 27 32 | bitr4d |  | 
						
							| 34 | 20 33 | imbitrrid |  | 
						
							| 35 | 2 4 6 8 11 19 34 | tfinds |  |