Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oe0m0 |
|
3 |
|
1on |
|
4 |
2 3
|
eqeltri |
|
5 |
1 4
|
eqeltrdi |
|
6 |
5
|
adantl |
|
7 |
|
oe0m1 |
|
8 |
7
|
biimpa |
|
9 |
|
0elon |
|
10 |
8 9
|
eqeltrdi |
|
11 |
10
|
adantll |
|
12 |
6 11
|
oe0lem |
|
13 |
12
|
anidms |
|
14 |
|
oveq1 |
|
15 |
14
|
eleq1d |
|
16 |
13 15
|
syl5ibr |
|
17 |
16
|
impcom |
|
18 |
|
oveq2 |
|
19 |
18
|
eleq1d |
|
20 |
|
oveq2 |
|
21 |
20
|
eleq1d |
|
22 |
|
oveq2 |
|
23 |
22
|
eleq1d |
|
24 |
|
oveq2 |
|
25 |
24
|
eleq1d |
|
26 |
|
oe0 |
|
27 |
26 3
|
eqeltrdi |
|
28 |
27
|
adantr |
|
29 |
|
omcl |
|
30 |
29
|
expcom |
|
31 |
30
|
adantr |
|
32 |
|
oesuc |
|
33 |
32
|
eleq1d |
|
34 |
31 33
|
sylibrd |
|
35 |
34
|
expcom |
|
36 |
35
|
adantrd |
|
37 |
|
vex |
|
38 |
|
iunon |
|
39 |
37 38
|
mpan |
|
40 |
|
oelim |
|
41 |
37 40
|
mpanlr1 |
|
42 |
41
|
anasss |
|
43 |
42
|
an12s |
|
44 |
43
|
eleq1d |
|
45 |
39 44
|
syl5ibr |
|
46 |
45
|
ex |
|
47 |
19 21 23 25 28 36 46
|
tfinds3 |
|
48 |
47
|
expd |
|
49 |
48
|
com12 |
|
50 |
49
|
imp31 |
|
51 |
17 50
|
oe0lem |
|