| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oe0m0 |
|
| 3 |
|
1on |
|
| 4 |
2 3
|
eqeltri |
|
| 5 |
1 4
|
eqeltrdi |
|
| 6 |
5
|
adantl |
|
| 7 |
|
oe0m1 |
|
| 8 |
7
|
biimpa |
|
| 9 |
|
0elon |
|
| 10 |
8 9
|
eqeltrdi |
|
| 11 |
10
|
adantll |
|
| 12 |
6 11
|
oe0lem |
|
| 13 |
12
|
anidms |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
imbitrrid |
|
| 17 |
16
|
impcom |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eleq1d |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
|
oe0 |
|
| 27 |
26 3
|
eqeltrdi |
|
| 28 |
27
|
adantr |
|
| 29 |
|
omcl |
|
| 30 |
29
|
expcom |
|
| 31 |
30
|
adantr |
|
| 32 |
|
oesuc |
|
| 33 |
32
|
eleq1d |
|
| 34 |
31 33
|
sylibrd |
|
| 35 |
34
|
expcom |
|
| 36 |
35
|
adantrd |
|
| 37 |
|
vex |
|
| 38 |
|
iunon |
|
| 39 |
37 38
|
mpan |
|
| 40 |
|
oelim |
|
| 41 |
37 40
|
mpanlr1 |
|
| 42 |
41
|
anasss |
|
| 43 |
42
|
an12s |
|
| 44 |
43
|
eleq1d |
|
| 45 |
39 44
|
imbitrrid |
|
| 46 |
45
|
ex |
|
| 47 |
19 21 23 25 28 36 46
|
tfinds3 |
|
| 48 |
47
|
expd |
|
| 49 |
48
|
com12 |
|
| 50 |
49
|
imp31 |
|
| 51 |
17 50
|
oe0lem |
|