Step |
Hyp |
Ref |
Expression |
1 |
|
oef1o.f |
|
2 |
|
oef1o.g |
|
3 |
|
oef1o.a |
|
4 |
|
oef1o.b |
|
5 |
|
oef1o.c |
|
6 |
|
oef1o.d |
|
7 |
|
oef1o.z |
|
8 |
|
oef1o.k |
|
9 |
|
oef1o.h |
|
10 |
|
eqid |
|
11 |
10 5 6
|
cantnff1o |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
f1ocnv |
|
16 |
2 15
|
syl |
|
17 |
|
ondif1 |
|
18 |
17
|
simprbi |
|
19 |
3 18
|
syl |
|
20 |
12 13 14 16 1 4 3 6 5 19
|
mapfien |
|
21 |
|
f1oeq1 |
|
22 |
8 21
|
ax-mp |
|
23 |
20 22
|
sylibr |
|
24 |
|
eqid |
|
25 |
24 5 6
|
cantnfdm |
|
26 |
7
|
breq2d |
|
27 |
26
|
rabbidv |
|
28 |
25 27
|
eqtr4d |
|
29 |
28
|
f1oeq3d |
|
30 |
23 29
|
mpbird |
|
31 |
3
|
eldifad |
|
32 |
12 31 4
|
cantnfdm |
|
33 |
32
|
f1oeq2d |
|
34 |
30 33
|
mpbird |
|
35 |
|
f1oco |
|
36 |
11 34 35
|
syl2anc |
|
37 |
|
eqid |
|
38 |
37 31 4
|
cantnff1o |
|
39 |
|
f1ocnv |
|
40 |
38 39
|
syl |
|
41 |
|
f1oco |
|
42 |
36 40 41
|
syl2anc |
|
43 |
|
f1oeq1 |
|
44 |
9 43
|
ax-mp |
|
45 |
42 44
|
sylibr |
|