Metamath Proof Explorer


Theorem oef1o

Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption ( F(/) ) = (/) can be discharged using fveqf1o .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses oef1o.f φ F : A 1-1 onto C
oef1o.g φ G : B 1-1 onto D
oef1o.a φ A On 1 𝑜
oef1o.b φ B On
oef1o.c φ C On
oef1o.d φ D On
oef1o.z φ F =
oef1o.k K = y x A B | finSupp x F y G -1
oef1o.h H = C CNF D K A CNF B -1
Assertion oef1o φ H : A 𝑜 B 1-1 onto C 𝑜 D

Proof

Step Hyp Ref Expression
1 oef1o.f φ F : A 1-1 onto C
2 oef1o.g φ G : B 1-1 onto D
3 oef1o.a φ A On 1 𝑜
4 oef1o.b φ B On
5 oef1o.c φ C On
6 oef1o.d φ D On
7 oef1o.z φ F =
8 oef1o.k K = y x A B | finSupp x F y G -1
9 oef1o.h H = C CNF D K A CNF B -1
10 eqid dom C CNF D = dom C CNF D
11 10 5 6 cantnff1o φ C CNF D : dom C CNF D 1-1 onto C 𝑜 D
12 eqid x A B | finSupp x = x A B | finSupp x
13 eqid x C D | finSupp F x = x C D | finSupp F x
14 eqid F = F
15 f1ocnv G : B 1-1 onto D G -1 : D 1-1 onto B
16 2 15 syl φ G -1 : D 1-1 onto B
17 ondif1 A On 1 𝑜 A On A
18 17 simprbi A On 1 𝑜 A
19 3 18 syl φ A
20 12 13 14 16 1 4 3 6 5 19 mapfien φ y x A B | finSupp x F y G -1 : x A B | finSupp x 1-1 onto x C D | finSupp F x
21 f1oeq1 K = y x A B | finSupp x F y G -1 K : x A B | finSupp x 1-1 onto x C D | finSupp F x y x A B | finSupp x F y G -1 : x A B | finSupp x 1-1 onto x C D | finSupp F x
22 8 21 ax-mp K : x A B | finSupp x 1-1 onto x C D | finSupp F x y x A B | finSupp x F y G -1 : x A B | finSupp x 1-1 onto x C D | finSupp F x
23 20 22 sylibr φ K : x A B | finSupp x 1-1 onto x C D | finSupp F x
24 eqid x C D | finSupp x = x C D | finSupp x
25 24 5 6 cantnfdm φ dom C CNF D = x C D | finSupp x
26 7 breq2d φ finSupp F x finSupp x
27 26 rabbidv φ x C D | finSupp F x = x C D | finSupp x
28 25 27 eqtr4d φ dom C CNF D = x C D | finSupp F x
29 28 f1oeq3d φ K : x A B | finSupp x 1-1 onto dom C CNF D K : x A B | finSupp x 1-1 onto x C D | finSupp F x
30 23 29 mpbird φ K : x A B | finSupp x 1-1 onto dom C CNF D
31 3 eldifad φ A On
32 12 31 4 cantnfdm φ dom A CNF B = x A B | finSupp x
33 32 f1oeq2d φ K : dom A CNF B 1-1 onto dom C CNF D K : x A B | finSupp x 1-1 onto dom C CNF D
34 30 33 mpbird φ K : dom A CNF B 1-1 onto dom C CNF D
35 f1oco C CNF D : dom C CNF D 1-1 onto C 𝑜 D K : dom A CNF B 1-1 onto dom C CNF D C CNF D K : dom A CNF B 1-1 onto C 𝑜 D
36 11 34 35 syl2anc φ C CNF D K : dom A CNF B 1-1 onto C 𝑜 D
37 eqid dom A CNF B = dom A CNF B
38 37 31 4 cantnff1o φ A CNF B : dom A CNF B 1-1 onto A 𝑜 B
39 f1ocnv A CNF B : dom A CNF B 1-1 onto A 𝑜 B A CNF B -1 : A 𝑜 B 1-1 onto dom A CNF B
40 38 39 syl φ A CNF B -1 : A 𝑜 B 1-1 onto dom A CNF B
41 f1oco C CNF D K : dom A CNF B 1-1 onto C 𝑜 D A CNF B -1 : A 𝑜 B 1-1 onto dom A CNF B C CNF D K A CNF B -1 : A 𝑜 B 1-1 onto C 𝑜 D
42 36 40 41 syl2anc φ C CNF D K A CNF B -1 : A 𝑜 B 1-1 onto C 𝑜 D
43 f1oeq1 H = C CNF D K A CNF B -1 H : A 𝑜 B 1-1 onto C 𝑜 D C CNF D K A CNF B -1 : A 𝑜 B 1-1 onto C 𝑜 D
44 9 43 ax-mp H : A 𝑜 B 1-1 onto C 𝑜 D C CNF D K A CNF B -1 : A 𝑜 B 1-1 onto C 𝑜 D
45 42 44 sylibr φ H : A 𝑜 B 1-1 onto C 𝑜 D