Metamath Proof Explorer


Theorem oelim

Description: Ordinal exponentiation with a limit exponent and nonzero base. Definition 8.30 of TakeutiZaring p. 67. (Contributed by NM, 1-Jan-2005) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oelim A On B C Lim B A A 𝑜 B = x B A 𝑜 x

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 simpr B C Lim B Lim B
3 1 2 jca B C Lim B B On Lim B
4 rdglim2a B On Lim B rec y V y 𝑜 A 1 𝑜 B = x B rec y V y 𝑜 A 1 𝑜 x
5 4 ad2antlr A On B On Lim B A rec y V y 𝑜 A 1 𝑜 B = x B rec y V y 𝑜 A 1 𝑜 x
6 oevn0 A On B On A A 𝑜 B = rec y V y 𝑜 A 1 𝑜 B
7 onelon B On x B x On
8 oevn0 A On x On A A 𝑜 x = rec y V y 𝑜 A 1 𝑜 x
9 7 8 sylanl2 A On B On x B A A 𝑜 x = rec y V y 𝑜 A 1 𝑜 x
10 9 exp42 A On B On x B A A 𝑜 x = rec y V y 𝑜 A 1 𝑜 x
11 10 com34 A On B On A x B A 𝑜 x = rec y V y 𝑜 A 1 𝑜 x
12 11 imp41 A On B On A x B A 𝑜 x = rec y V y 𝑜 A 1 𝑜 x
13 12 iuneq2dv A On B On A x B A 𝑜 x = x B rec y V y 𝑜 A 1 𝑜 x
14 6 13 eqeq12d A On B On A A 𝑜 B = x B A 𝑜 x rec y V y 𝑜 A 1 𝑜 B = x B rec y V y 𝑜 A 1 𝑜 x
15 14 adantlrr A On B On Lim B A A 𝑜 B = x B A 𝑜 x rec y V y 𝑜 A 1 𝑜 B = x B rec y V y 𝑜 A 1 𝑜 x
16 5 15 mpbird A On B On Lim B A A 𝑜 B = x B A 𝑜 x
17 3 16 sylanl2 A On B C Lim B A A 𝑜 B = x B A 𝑜 x