Metamath Proof Explorer


Theorem oemapval

Description: Value of the relation T . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
Assertion oemapval φ F T G z B F z G z w B z w F w = G w

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 fveq1 x = F x z = F z
8 fveq1 y = G y z = G z
9 eleq12 x z = F z y z = G z x z y z F z G z
10 7 8 9 syl2an x = F y = G x z y z F z G z
11 fveq1 x = F x w = F w
12 fveq1 y = G y w = G w
13 11 12 eqeqan12d x = F y = G x w = y w F w = G w
14 13 imbi2d x = F y = G z w x w = y w z w F w = G w
15 14 ralbidv x = F y = G w B z w x w = y w w B z w F w = G w
16 10 15 anbi12d x = F y = G x z y z w B z w x w = y w F z G z w B z w F w = G w
17 16 rexbidv x = F y = G z B x z y z w B z w x w = y w z B F z G z w B z w F w = G w
18 17 4 brabga F S G S F T G z B F z G z w B z w F w = G w
19 5 6 18 syl2anc φ F T G z B F z G z w B z w F w = G w