| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | oemapval.t |  | 
						
							| 5 |  | oemapval.f |  | 
						
							| 6 |  | oemapval.g |  | 
						
							| 7 |  | oemapvali.r |  | 
						
							| 8 |  | oemapvali.x |  | 
						
							| 9 | 1 2 3 4 5 6 | oemapval |  | 
						
							| 10 | 7 9 | mpbid |  | 
						
							| 11 |  | ssrab2 |  | 
						
							| 12 | 3 | adantr |  | 
						
							| 13 |  | onss |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 11 14 | sstrid |  | 
						
							| 16 | 1 2 3 | cantnfs |  | 
						
							| 17 | 6 16 | mpbid |  | 
						
							| 18 | 17 | simprd |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 3 | 3ad2ant1 |  | 
						
							| 21 |  | simp2 |  | 
						
							| 22 | 17 | simpld |  | 
						
							| 23 | 22 | ffnd |  | 
						
							| 24 | 23 | 3ad2ant1 |  | 
						
							| 25 |  | ne0i |  | 
						
							| 26 | 25 | 3ad2ant3 |  | 
						
							| 27 |  | fvn0elsupp |  | 
						
							| 28 | 20 21 24 26 27 | syl22anc |  | 
						
							| 29 | 28 | rabssdv |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | fsuppimp |  | 
						
							| 32 |  | ssfi |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 31 33 | simpl2im |  | 
						
							| 35 | 19 30 34 | sylc |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 |  | fveq2 |  | 
						
							| 38 | 36 37 | eleq12d |  | 
						
							| 39 |  | simprl |  | 
						
							| 40 |  | simprrl |  | 
						
							| 41 | 38 39 40 | elrabd |  | 
						
							| 42 | 41 | ne0d |  | 
						
							| 43 |  | ordunifi |  | 
						
							| 44 | 15 35 42 43 | syl3anc |  | 
						
							| 45 | 8 44 | eqeltrid |  | 
						
							| 46 | 11 45 | sselid |  | 
						
							| 47 |  | fveq2 |  | 
						
							| 48 |  | fveq2 |  | 
						
							| 49 | 47 48 | eleq12d |  | 
						
							| 50 |  | fveq2 |  | 
						
							| 51 |  | fveq2 |  | 
						
							| 52 | 50 51 | eleq12d |  | 
						
							| 53 | 52 | cbvrabv |  | 
						
							| 54 | 49 53 | elrab2 |  | 
						
							| 55 | 45 54 | sylib |  | 
						
							| 56 | 55 | simprd |  | 
						
							| 57 |  | simprrr |  | 
						
							| 58 | 2 | adantr |  | 
						
							| 59 | 22 | adantr |  | 
						
							| 60 | 59 46 | ffvelcdmd |  | 
						
							| 61 |  | onelon |  | 
						
							| 62 | 58 60 61 | syl2anc |  | 
						
							| 63 |  | eloni |  | 
						
							| 64 |  | ordirr |  | 
						
							| 65 | 62 63 64 | 3syl |  | 
						
							| 66 |  | nelneq |  | 
						
							| 67 | 56 65 66 | syl2anc |  | 
						
							| 68 |  | eleq2 |  | 
						
							| 69 |  | fveq2 |  | 
						
							| 70 |  | fveq2 |  | 
						
							| 71 | 69 70 | eqeq12d |  | 
						
							| 72 | 68 71 | imbi12d |  | 
						
							| 73 | 72 57 46 | rspcdva |  | 
						
							| 74 | 67 73 | mtod |  | 
						
							| 75 |  | ssexg |  | 
						
							| 76 | 11 12 75 | sylancr |  | 
						
							| 77 |  | ssonuni |  | 
						
							| 78 | 76 15 77 | sylc |  | 
						
							| 79 | 8 78 | eqeltrid |  | 
						
							| 80 |  | onelon |  | 
						
							| 81 | 12 39 80 | syl2anc |  | 
						
							| 82 |  | ontri1 |  | 
						
							| 83 | 79 81 82 | syl2anc |  | 
						
							| 84 | 74 83 | mpbird |  | 
						
							| 85 |  | elssuni |  | 
						
							| 86 | 85 8 | sseqtrrdi |  | 
						
							| 87 | 41 86 | syl |  | 
						
							| 88 | 84 87 | eqssd |  | 
						
							| 89 |  | eleq1 |  | 
						
							| 90 | 89 | imbi1d |  | 
						
							| 91 | 90 | ralbidv |  | 
						
							| 92 | 88 91 | syl |  | 
						
							| 93 | 57 92 | mpbird |  | 
						
							| 94 | 46 56 93 | 3jca |  | 
						
							| 95 | 10 94 | rexlimddv |  |