Step |
Hyp |
Ref |
Expression |
1 |
|
oa00 |
|
2 |
1
|
biimpar |
|
3 |
2
|
oveq2d |
|
4 |
|
oveq2 |
|
5 |
|
oveq2 |
|
6 |
|
oe0m0 |
|
7 |
5 6
|
eqtrdi |
|
8 |
4 7
|
oveqan12d |
|
9 |
|
0elon |
|
10 |
|
oecl |
|
11 |
9 9 10
|
mp2an |
|
12 |
|
om1 |
|
13 |
11 12
|
ax-mp |
|
14 |
8 13
|
eqtrdi |
|
15 |
14
|
adantl |
|
16 |
3 15
|
eqtr4d |
|
17 |
|
oacl |
|
18 |
|
on0eln0 |
|
19 |
17 18
|
syl |
|
20 |
|
oe0m1 |
|
21 |
17 20
|
syl |
|
22 |
1
|
necon3abid |
|
23 |
19 21 22
|
3bitr3d |
|
24 |
23
|
biimpar |
|
25 |
|
on0eln0 |
|
26 |
25
|
adantr |
|
27 |
|
on0eln0 |
|
28 |
27
|
adantl |
|
29 |
26 28
|
orbi12d |
|
30 |
|
neorian |
|
31 |
29 30
|
bitrdi |
|
32 |
|
oe0m1 |
|
33 |
32
|
biimpa |
|
34 |
33
|
oveq1d |
|
35 |
|
oecl |
|
36 |
9 35
|
mpan |
|
37 |
|
om0r |
|
38 |
36 37
|
syl |
|
39 |
34 38
|
sylan9eq |
|
40 |
39
|
an32s |
|
41 |
|
oe0m1 |
|
42 |
41
|
biimpa |
|
43 |
42
|
oveq2d |
|
44 |
|
oecl |
|
45 |
9 44
|
mpan |
|
46 |
|
om0 |
|
47 |
45 46
|
syl |
|
48 |
43 47
|
sylan9eqr |
|
49 |
48
|
anassrs |
|
50 |
40 49
|
jaodan |
|
51 |
50
|
ex |
|
52 |
31 51
|
sylbird |
|
53 |
52
|
imp |
|
54 |
24 53
|
eqtr4d |
|
55 |
16 54
|
pm2.61dan |
|
56 |
|
oveq1 |
|
57 |
|
oveq1 |
|
58 |
|
oveq1 |
|
59 |
57 58
|
oveq12d |
|
60 |
56 59
|
eqeq12d |
|
61 |
55 60
|
syl5ibr |
|
62 |
61
|
impcom |
|
63 |
|
oveq1 |
|
64 |
|
oveq1 |
|
65 |
|
oveq1 |
|
66 |
64 65
|
oveq12d |
|
67 |
63 66
|
eqeq12d |
|
68 |
67
|
imbi2d |
|
69 |
|
oveq1 |
|
70 |
69
|
oveq2d |
|
71 |
|
oveq2 |
|
72 |
71
|
oveq1d |
|
73 |
70 72
|
eqeq12d |
|
74 |
73
|
imbi2d |
|
75 |
|
eleq1 |
|
76 |
|
eleq2 |
|
77 |
75 76
|
anbi12d |
|
78 |
|
eleq1 |
|
79 |
|
eleq2 |
|
80 |
78 79
|
anbi12d |
|
81 |
|
1on |
|
82 |
|
0lt1o |
|
83 |
81 82
|
pm3.2i |
|
84 |
77 80 83
|
elimhyp |
|
85 |
84
|
simpli |
|
86 |
84
|
simpri |
|
87 |
81
|
elimel |
|
88 |
85 86 87
|
oeoalem |
|
89 |
68 74 88
|
dedth2h |
|
90 |
89
|
impr |
|
91 |
90
|
an32s |
|
92 |
62 91
|
oe0lem |
|
93 |
92
|
3impb |
|