Metamath Proof Explorer


Theorem oeoalem

Description: Lemma for oeoa . (Contributed by Eric Schmidt, 26-May-2009)

Ref Expression
Hypotheses oeoalem.1 A On
oeoalem.2 A
oeoalem.3 B On
Assertion oeoalem C On A 𝑜 B + 𝑜 C = A 𝑜 B 𝑜 A 𝑜 C

Proof

Step Hyp Ref Expression
1 oeoalem.1 A On
2 oeoalem.2 A
3 oeoalem.3 B On
4 oveq2 x = B + 𝑜 x = B + 𝑜
5 4 oveq2d x = A 𝑜 B + 𝑜 x = A 𝑜 B + 𝑜
6 oveq2 x = A 𝑜 x = A 𝑜
7 6 oveq2d x = A 𝑜 B 𝑜 A 𝑜 x = A 𝑜 B 𝑜 A 𝑜
8 5 7 eqeq12d x = A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x A 𝑜 B + 𝑜 = A 𝑜 B 𝑜 A 𝑜
9 oveq2 x = y B + 𝑜 x = B + 𝑜 y
10 9 oveq2d x = y A 𝑜 B + 𝑜 x = A 𝑜 B + 𝑜 y
11 oveq2 x = y A 𝑜 x = A 𝑜 y
12 11 oveq2d x = y A 𝑜 B 𝑜 A 𝑜 x = A 𝑜 B 𝑜 A 𝑜 y
13 10 12 eqeq12d x = y A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y
14 oveq2 x = suc y B + 𝑜 x = B + 𝑜 suc y
15 14 oveq2d x = suc y A 𝑜 B + 𝑜 x = A 𝑜 B + 𝑜 suc y
16 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
17 16 oveq2d x = suc y A 𝑜 B 𝑜 A 𝑜 x = A 𝑜 B 𝑜 A 𝑜 suc y
18 15 17 eqeq12d x = suc y A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x A 𝑜 B + 𝑜 suc y = A 𝑜 B 𝑜 A 𝑜 suc y
19 oveq2 x = C B + 𝑜 x = B + 𝑜 C
20 19 oveq2d x = C A 𝑜 B + 𝑜 x = A 𝑜 B + 𝑜 C
21 oveq2 x = C A 𝑜 x = A 𝑜 C
22 21 oveq2d x = C A 𝑜 B 𝑜 A 𝑜 x = A 𝑜 B 𝑜 A 𝑜 C
23 20 22 eqeq12d x = C A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x A 𝑜 B + 𝑜 C = A 𝑜 B 𝑜 A 𝑜 C
24 oecl A On B On A 𝑜 B On
25 1 3 24 mp2an A 𝑜 B On
26 om1 A 𝑜 B On A 𝑜 B 𝑜 1 𝑜 = A 𝑜 B
27 25 26 ax-mp A 𝑜 B 𝑜 1 𝑜 = A 𝑜 B
28 oe0 A On A 𝑜 = 1 𝑜
29 1 28 ax-mp A 𝑜 = 1 𝑜
30 29 oveq2i A 𝑜 B 𝑜 A 𝑜 = A 𝑜 B 𝑜 1 𝑜
31 oa0 B On B + 𝑜 = B
32 3 31 ax-mp B + 𝑜 = B
33 32 oveq2i A 𝑜 B + 𝑜 = A 𝑜 B
34 27 30 33 3eqtr4ri A 𝑜 B + 𝑜 = A 𝑜 B 𝑜 A 𝑜
35 oasuc B On y On B + 𝑜 suc y = suc B + 𝑜 y
36 35 oveq2d B On y On A 𝑜 B + 𝑜 suc y = A 𝑜 suc B + 𝑜 y
37 oacl B On y On B + 𝑜 y On
38 oesuc A On B + 𝑜 y On A 𝑜 suc B + 𝑜 y = A 𝑜 B + 𝑜 y 𝑜 A
39 1 37 38 sylancr B On y On A 𝑜 suc B + 𝑜 y = A 𝑜 B + 𝑜 y 𝑜 A
40 36 39 eqtrd B On y On A 𝑜 B + 𝑜 suc y = A 𝑜 B + 𝑜 y 𝑜 A
41 3 40 mpan y On A 𝑜 B + 𝑜 suc y = A 𝑜 B + 𝑜 y 𝑜 A
42 oveq1 A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
43 41 42 sylan9eq y On A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 suc y = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
44 oecl A On y On A 𝑜 y On
45 omass A 𝑜 B On A 𝑜 y On A On A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
46 25 1 45 mp3an13 A 𝑜 y On A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
47 44 46 syl A On y On A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
48 oesuc A On y On A 𝑜 suc y = A 𝑜 y 𝑜 A
49 48 oveq2d A On y On A 𝑜 B 𝑜 A 𝑜 suc y = A 𝑜 B 𝑜 A 𝑜 y 𝑜 A
50 47 49 eqtr4d A On y On A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 suc y
51 1 50 mpan y On A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 suc y
52 51 adantr y On A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B 𝑜 A 𝑜 y 𝑜 A = A 𝑜 B 𝑜 A 𝑜 suc y
53 43 52 eqtrd y On A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 suc y = A 𝑜 B 𝑜 A 𝑜 suc y
54 53 ex y On A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 suc y = A 𝑜 B 𝑜 A 𝑜 suc y
55 vex x V
56 oalim B On x V Lim x B + 𝑜 x = y x B + 𝑜 y
57 3 56 mpan x V Lim x B + 𝑜 x = y x B + 𝑜 y
58 55 57 mpan Lim x B + 𝑜 x = y x B + 𝑜 y
59 58 oveq2d Lim x A 𝑜 B + 𝑜 x = A 𝑜 y x B + 𝑜 y
60 limord Lim x Ord x
61 ordelon Ord x y x y On
62 60 61 sylan Lim x y x y On
63 3 62 37 sylancr Lim x y x B + 𝑜 y On
64 63 ralrimiva Lim x y x B + 𝑜 y On
65 0ellim Lim x x
66 65 ne0d Lim x x
67 vex w V
68 oelim A On w V Lim w A A 𝑜 w = z w A 𝑜 z
69 2 68 mpan2 A On w V Lim w A 𝑜 w = z w A 𝑜 z
70 1 69 mpan w V Lim w A 𝑜 w = z w A 𝑜 z
71 67 70 mpan Lim w A 𝑜 w = z w A 𝑜 z
72 oewordi z On w On A On A z w A 𝑜 z A 𝑜 w
73 2 72 mpan2 z On w On A On z w A 𝑜 z A 𝑜 w
74 1 73 mp3an3 z On w On z w A 𝑜 z A 𝑜 w
75 74 3impia z On w On z w A 𝑜 z A 𝑜 w
76 71 75 onoviun x V y x B + 𝑜 y On x A 𝑜 y x B + 𝑜 y = y x A 𝑜 B + 𝑜 y
77 55 64 66 76 mp3an2i Lim x A 𝑜 y x B + 𝑜 y = y x A 𝑜 B + 𝑜 y
78 59 77 eqtrd Lim x A 𝑜 B + 𝑜 x = y x A 𝑜 B + 𝑜 y
79 iuneq2 y x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y y x A 𝑜 B + 𝑜 y = y x A 𝑜 B 𝑜 A 𝑜 y
80 78 79 sylan9eq Lim x y x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 x = y x A 𝑜 B 𝑜 A 𝑜 y
81 oelim A On x V Lim x A A 𝑜 x = y x A 𝑜 y
82 2 81 mpan2 A On x V Lim x A 𝑜 x = y x A 𝑜 y
83 1 82 mpan x V Lim x A 𝑜 x = y x A 𝑜 y
84 55 83 mpan Lim x A 𝑜 x = y x A 𝑜 y
85 84 oveq2d Lim x A 𝑜 B 𝑜 A 𝑜 x = A 𝑜 B 𝑜 y x A 𝑜 y
86 1 62 44 sylancr Lim x y x A 𝑜 y On
87 86 ralrimiva Lim x y x A 𝑜 y On
88 omlim A 𝑜 B On w V Lim w A 𝑜 B 𝑜 w = z w A 𝑜 B 𝑜 z
89 25 88 mpan w V Lim w A 𝑜 B 𝑜 w = z w A 𝑜 B 𝑜 z
90 67 89 mpan Lim w A 𝑜 B 𝑜 w = z w A 𝑜 B 𝑜 z
91 omwordi z On w On A 𝑜 B On z w A 𝑜 B 𝑜 z A 𝑜 B 𝑜 w
92 25 91 mp3an3 z On w On z w A 𝑜 B 𝑜 z A 𝑜 B 𝑜 w
93 92 3impia z On w On z w A 𝑜 B 𝑜 z A 𝑜 B 𝑜 w
94 90 93 onoviun x V y x A 𝑜 y On x A 𝑜 B 𝑜 y x A 𝑜 y = y x A 𝑜 B 𝑜 A 𝑜 y
95 55 87 66 94 mp3an2i Lim x A 𝑜 B 𝑜 y x A 𝑜 y = y x A 𝑜 B 𝑜 A 𝑜 y
96 85 95 eqtrd Lim x A 𝑜 B 𝑜 A 𝑜 x = y x A 𝑜 B 𝑜 A 𝑜 y
97 96 adantr Lim x y x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B 𝑜 A 𝑜 x = y x A 𝑜 B 𝑜 A 𝑜 y
98 80 97 eqtr4d Lim x y x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x
99 98 ex Lim x y x A 𝑜 B + 𝑜 y = A 𝑜 B 𝑜 A 𝑜 y A 𝑜 B + 𝑜 x = A 𝑜 B 𝑜 A 𝑜 x
100 8 13 18 23 34 54 99 tfinds C On A 𝑜 B + 𝑜 C = A 𝑜 B 𝑜 A 𝑜 C