Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oe0m0 |
|
3 |
1 2
|
eqtrdi |
|
4 |
3
|
oveq1d |
|
5 |
|
oe1m |
|
6 |
4 5
|
sylan9eqr |
|
7 |
6
|
adantll |
|
8 |
|
oveq2 |
|
9 |
|
0elon |
|
10 |
|
oecl |
|
11 |
9 10
|
mpan |
|
12 |
|
oe0 |
|
13 |
11 12
|
syl |
|
14 |
8 13
|
sylan9eqr |
|
15 |
14
|
adantlr |
|
16 |
7 15
|
jaodan |
|
17 |
|
om00 |
|
18 |
17
|
biimpar |
|
19 |
18
|
oveq2d |
|
20 |
19 2
|
eqtrdi |
|
21 |
16 20
|
eqtr4d |
|
22 |
|
on0eln0 |
|
23 |
|
on0eln0 |
|
24 |
22 23
|
bi2anan9 |
|
25 |
|
neanior |
|
26 |
24 25
|
bitrdi |
|
27 |
|
oe0m1 |
|
28 |
27
|
biimpa |
|
29 |
28
|
oveq1d |
|
30 |
|
oe0m1 |
|
31 |
30
|
biimpa |
|
32 |
29 31
|
sylan9eq |
|
33 |
32
|
an4s |
|
34 |
|
om00el |
|
35 |
|
omcl |
|
36 |
|
oe0m1 |
|
37 |
35 36
|
syl |
|
38 |
34 37
|
bitr3d |
|
39 |
38
|
biimpa |
|
40 |
33 39
|
eqtr4d |
|
41 |
40
|
ex |
|
42 |
26 41
|
sylbird |
|
43 |
42
|
imp |
|
44 |
21 43
|
pm2.61dan |
|
45 |
|
oveq1 |
|
46 |
45
|
oveq1d |
|
47 |
|
oveq1 |
|
48 |
46 47
|
eqeq12d |
|
49 |
44 48
|
syl5ibr |
|
50 |
49
|
impcom |
|
51 |
|
oveq1 |
|
52 |
51
|
oveq1d |
|
53 |
|
oveq1 |
|
54 |
52 53
|
eqeq12d |
|
55 |
54
|
imbi2d |
|
56 |
|
eleq1 |
|
57 |
|
eleq2 |
|
58 |
56 57
|
anbi12d |
|
59 |
|
eleq1 |
|
60 |
|
eleq2 |
|
61 |
59 60
|
anbi12d |
|
62 |
|
1on |
|
63 |
|
0lt1o |
|
64 |
62 63
|
pm3.2i |
|
65 |
58 61 64
|
elimhyp |
|
66 |
65
|
simpli |
|
67 |
65
|
simpri |
|
68 |
66 67
|
oeoelem |
|
69 |
55 68
|
dedth |
|
70 |
69
|
imp |
|
71 |
70
|
an32s |
|
72 |
50 71
|
oe0lem |
|
73 |
72
|
3impb |
|