Step |
Hyp |
Ref |
Expression |
1 |
|
oeoelem.1 |
|
2 |
|
oeoelem.2 |
|
3 |
|
oveq2 |
|
4 |
|
oveq2 |
|
5 |
4
|
oveq2d |
|
6 |
3 5
|
eqeq12d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
8
|
oveq2d |
|
10 |
7 9
|
eqeq12d |
|
11 |
|
oveq2 |
|
12 |
|
oveq2 |
|
13 |
12
|
oveq2d |
|
14 |
11 13
|
eqeq12d |
|
15 |
|
oveq2 |
|
16 |
|
oveq2 |
|
17 |
16
|
oveq2d |
|
18 |
15 17
|
eqeq12d |
|
19 |
|
oecl |
|
20 |
1 19
|
mpan |
|
21 |
|
oe0 |
|
22 |
20 21
|
syl |
|
23 |
|
om0 |
|
24 |
23
|
oveq2d |
|
25 |
|
oe0 |
|
26 |
1 25
|
ax-mp |
|
27 |
24 26
|
eqtrdi |
|
28 |
22 27
|
eqtr4d |
|
29 |
|
oveq1 |
|
30 |
|
oesuc |
|
31 |
20 30
|
sylan |
|
32 |
|
omsuc |
|
33 |
32
|
oveq2d |
|
34 |
|
omcl |
|
35 |
|
oeoa |
|
36 |
1 35
|
mp3an1 |
|
37 |
34 36
|
sylan |
|
38 |
37
|
anabss1 |
|
39 |
33 38
|
eqtrd |
|
40 |
31 39
|
eqeq12d |
|
41 |
29 40
|
syl5ibr |
|
42 |
41
|
expcom |
|
43 |
|
iuneq2 |
|
44 |
|
vex |
|
45 |
|
oen0 |
|
46 |
2 45
|
mpan2 |
|
47 |
|
oelim |
|
48 |
19 47
|
sylanl1 |
|
49 |
46 48
|
mpidan |
|
50 |
1 49
|
mpanl1 |
|
51 |
44 50
|
mpanr1 |
|
52 |
|
omlim |
|
53 |
44 52
|
mpanr1 |
|
54 |
53
|
oveq2d |
|
55 |
|
limord |
|
56 |
|
ordelon |
|
57 |
55 56
|
sylan |
|
58 |
57 34
|
sylan2 |
|
59 |
58
|
anassrs |
|
60 |
59
|
ralrimiva |
|
61 |
|
0ellim |
|
62 |
61
|
ne0d |
|
63 |
62
|
adantl |
|
64 |
|
vex |
|
65 |
|
oelim |
|
66 |
2 65
|
mpan2 |
|
67 |
1 66
|
mpan |
|
68 |
64 67
|
mpan |
|
69 |
|
oewordi |
|
70 |
2 69
|
mpan2 |
|
71 |
1 70
|
mp3an3 |
|
72 |
71
|
3impia |
|
73 |
68 72
|
onoviun |
|
74 |
44 60 63 73
|
mp3an2i |
|
75 |
54 74
|
eqtrd |
|
76 |
51 75
|
eqeq12d |
|
77 |
43 76
|
syl5ibr |
|
78 |
77
|
expcom |
|
79 |
6 10 14 18 28 42 78
|
tfinds3 |
|
80 |
79
|
impcom |
|