Metamath Proof Explorer


Theorem oeord

Description: Ordering property of ordinal exponentiation. Corollary 8.34 of TakeutiZaring p. 68 and its converse. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)

Ref Expression
Assertion oeord AOnBOnCOn2𝑜ABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 oeordi BOnCOn2𝑜ABC𝑜AC𝑜B
2 1 3adant1 AOnBOnCOn2𝑜ABC𝑜AC𝑜B
3 oveq2 A=BC𝑜A=C𝑜B
4 3 a1i AOnBOnCOn2𝑜A=BC𝑜A=C𝑜B
5 oeordi AOnCOn2𝑜BAC𝑜BC𝑜A
6 5 3adant2 AOnBOnCOn2𝑜BAC𝑜BC𝑜A
7 4 6 orim12d AOnBOnCOn2𝑜A=BBAC𝑜A=C𝑜BC𝑜BC𝑜A
8 7 con3d AOnBOnCOn2𝑜¬C𝑜A=C𝑜BC𝑜BC𝑜A¬A=BBA
9 eldifi COn2𝑜COn
10 9 3ad2ant3 AOnBOnCOn2𝑜COn
11 simp1 AOnBOnCOn2𝑜AOn
12 oecl COnAOnC𝑜AOn
13 10 11 12 syl2anc AOnBOnCOn2𝑜C𝑜AOn
14 simp2 AOnBOnCOn2𝑜BOn
15 oecl COnBOnC𝑜BOn
16 10 14 15 syl2anc AOnBOnCOn2𝑜C𝑜BOn
17 eloni C𝑜AOnOrdC𝑜A
18 eloni C𝑜BOnOrdC𝑜B
19 ordtri2 OrdC𝑜AOrdC𝑜BC𝑜AC𝑜B¬C𝑜A=C𝑜BC𝑜BC𝑜A
20 17 18 19 syl2an C𝑜AOnC𝑜BOnC𝑜AC𝑜B¬C𝑜A=C𝑜BC𝑜BC𝑜A
21 13 16 20 syl2anc AOnBOnCOn2𝑜C𝑜AC𝑜B¬C𝑜A=C𝑜BC𝑜BC𝑜A
22 eloni AOnOrdA
23 eloni BOnOrdB
24 ordtri2 OrdAOrdBAB¬A=BBA
25 22 23 24 syl2an AOnBOnAB¬A=BBA
26 25 3adant3 AOnBOnCOn2𝑜AB¬A=BBA
27 8 21 26 3imtr4d AOnBOnCOn2𝑜C𝑜AC𝑜BAB
28 2 27 impbid AOnBOnCOn2𝑜ABC𝑜AC𝑜B