Metamath Proof Explorer


Theorem oeordi

Description: Ordering law for ordinal exponentiation. Proposition 8.33 of TakeutiZaring p. 67. (Contributed by NM, 5-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)

Ref Expression
Assertion oeordi B On C On 2 𝑜 A B C 𝑜 A C 𝑜 B

Proof

Step Hyp Ref Expression
1 oveq2 x = suc A C 𝑜 x = C 𝑜 suc A
2 1 eleq2d x = suc A C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 suc A
3 2 imbi2d x = suc A C On 2 𝑜 C 𝑜 A C 𝑜 x C On 2 𝑜 C 𝑜 A C 𝑜 suc A
4 oveq2 x = y C 𝑜 x = C 𝑜 y
5 4 eleq2d x = y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 y
6 5 imbi2d x = y C On 2 𝑜 C 𝑜 A C 𝑜 x C On 2 𝑜 C 𝑜 A C 𝑜 y
7 oveq2 x = suc y C 𝑜 x = C 𝑜 suc y
8 7 eleq2d x = suc y C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 suc y
9 8 imbi2d x = suc y C On 2 𝑜 C 𝑜 A C 𝑜 x C On 2 𝑜 C 𝑜 A C 𝑜 suc y
10 oveq2 x = B C 𝑜 x = C 𝑜 B
11 10 eleq2d x = B C 𝑜 A C 𝑜 x C 𝑜 A C 𝑜 B
12 11 imbi2d x = B C On 2 𝑜 C 𝑜 A C 𝑜 x C On 2 𝑜 C 𝑜 A C 𝑜 B
13 eldifi C On 2 𝑜 C On
14 oecl C On A On C 𝑜 A On
15 13 14 sylan C On 2 𝑜 A On C 𝑜 A On
16 om1 C 𝑜 A On C 𝑜 A 𝑜 1 𝑜 = C 𝑜 A
17 15 16 syl C On 2 𝑜 A On C 𝑜 A 𝑜 1 𝑜 = C 𝑜 A
18 ondif2 C On 2 𝑜 C On 1 𝑜 C
19 18 simprbi C On 2 𝑜 1 𝑜 C
20 19 adantr C On 2 𝑜 A On 1 𝑜 C
21 13 adantr C On 2 𝑜 A On C On
22 simpr C On 2 𝑜 A On A On
23 dif20el C On 2 𝑜 C
24 23 adantr C On 2 𝑜 A On C
25 oen0 C On A On C C 𝑜 A
26 21 22 24 25 syl21anc C On 2 𝑜 A On C 𝑜 A
27 omordi C On C 𝑜 A On C 𝑜 A 1 𝑜 C C 𝑜 A 𝑜 1 𝑜 C 𝑜 A 𝑜 C
28 21 15 26 27 syl21anc C On 2 𝑜 A On 1 𝑜 C C 𝑜 A 𝑜 1 𝑜 C 𝑜 A 𝑜 C
29 20 28 mpd C On 2 𝑜 A On C 𝑜 A 𝑜 1 𝑜 C 𝑜 A 𝑜 C
30 17 29 eqeltrrd C On 2 𝑜 A On C 𝑜 A C 𝑜 A 𝑜 C
31 oesuc C On A On C 𝑜 suc A = C 𝑜 A 𝑜 C
32 13 31 sylan C On 2 𝑜 A On C 𝑜 suc A = C 𝑜 A 𝑜 C
33 30 32 eleqtrrd C On 2 𝑜 A On C 𝑜 A C 𝑜 suc A
34 33 expcom A On C On 2 𝑜 C 𝑜 A C 𝑜 suc A
35 oecl C On y On C 𝑜 y On
36 13 35 sylan C On 2 𝑜 y On C 𝑜 y On
37 om1 C 𝑜 y On C 𝑜 y 𝑜 1 𝑜 = C 𝑜 y
38 36 37 syl C On 2 𝑜 y On C 𝑜 y 𝑜 1 𝑜 = C 𝑜 y
39 19 adantr C On 2 𝑜 y On 1 𝑜 C
40 13 adantr C On 2 𝑜 y On C On
41 simpr C On 2 𝑜 y On y On
42 23 adantr C On 2 𝑜 y On C
43 oen0 C On y On C C 𝑜 y
44 40 41 42 43 syl21anc C On 2 𝑜 y On C 𝑜 y
45 omordi C On C 𝑜 y On C 𝑜 y 1 𝑜 C C 𝑜 y 𝑜 1 𝑜 C 𝑜 y 𝑜 C
46 40 36 44 45 syl21anc C On 2 𝑜 y On 1 𝑜 C C 𝑜 y 𝑜 1 𝑜 C 𝑜 y 𝑜 C
47 39 46 mpd C On 2 𝑜 y On C 𝑜 y 𝑜 1 𝑜 C 𝑜 y 𝑜 C
48 38 47 eqeltrrd C On 2 𝑜 y On C 𝑜 y C 𝑜 y 𝑜 C
49 oesuc C On y On C 𝑜 suc y = C 𝑜 y 𝑜 C
50 13 49 sylan C On 2 𝑜 y On C 𝑜 suc y = C 𝑜 y 𝑜 C
51 48 50 eleqtrrd C On 2 𝑜 y On C 𝑜 y C 𝑜 suc y
52 suceloni y On suc y On
53 oecl C On suc y On C 𝑜 suc y On
54 13 52 53 syl2an C On 2 𝑜 y On C 𝑜 suc y On
55 ontr1 C 𝑜 suc y On C 𝑜 A C 𝑜 y C 𝑜 y C 𝑜 suc y C 𝑜 A C 𝑜 suc y
56 54 55 syl C On 2 𝑜 y On C 𝑜 A C 𝑜 y C 𝑜 y C 𝑜 suc y C 𝑜 A C 𝑜 suc y
57 51 56 mpan2d C On 2 𝑜 y On C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc y
58 57 expcom y On C On 2 𝑜 C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc y
59 58 adantr y On A y C On 2 𝑜 C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc y
60 59 a2d y On A y C On 2 𝑜 C 𝑜 A C 𝑜 y C On 2 𝑜 C 𝑜 A C 𝑜 suc y
61 bi2.04 A y C On 2 𝑜 C 𝑜 A C 𝑜 y C On 2 𝑜 A y C 𝑜 A C 𝑜 y
62 61 ralbii y x A y C On 2 𝑜 C 𝑜 A C 𝑜 y y x C On 2 𝑜 A y C 𝑜 A C 𝑜 y
63 r19.21v y x C On 2 𝑜 A y C 𝑜 A C 𝑜 y C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y
64 62 63 bitri y x A y C On 2 𝑜 C 𝑜 A C 𝑜 y C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y
65 limsuc Lim x A x suc A x
66 65 biimpa Lim x A x suc A x
67 elex suc A x suc A V
68 sucexb A V suc A V
69 sucidg A V A suc A
70 68 69 sylbir suc A V A suc A
71 67 70 syl suc A x A suc A
72 eleq2 y = suc A A y A suc A
73 oveq2 y = suc A C 𝑜 y = C 𝑜 suc A
74 73 eleq2d y = suc A C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc A
75 72 74 imbi12d y = suc A A y C 𝑜 A C 𝑜 y A suc A C 𝑜 A C 𝑜 suc A
76 75 rspcv suc A x y x A y C 𝑜 A C 𝑜 y A suc A C 𝑜 A C 𝑜 suc A
77 71 76 mpid suc A x y x A y C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 suc A
78 77 anc2li suc A x y x A y C 𝑜 A C 𝑜 y suc A x C 𝑜 A C 𝑜 suc A
79 73 eliuni suc A x C 𝑜 A C 𝑜 suc A C 𝑜 A y x C 𝑜 y
80 78 79 syl6 suc A x y x A y C 𝑜 A C 𝑜 y C 𝑜 A y x C 𝑜 y
81 66 80 syl Lim x A x y x A y C 𝑜 A C 𝑜 y C 𝑜 A y x C 𝑜 y
82 81 adantr Lim x A x C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y C 𝑜 A y x C 𝑜 y
83 13 adantl Lim x C On 2 𝑜 C On
84 simpl Lim x C On 2 𝑜 Lim x
85 23 adantl Lim x C On 2 𝑜 C
86 vex x V
87 oelim C On x V Lim x C C 𝑜 x = y x C 𝑜 y
88 86 87 mpanlr1 C On Lim x C C 𝑜 x = y x C 𝑜 y
89 83 84 85 88 syl21anc Lim x C On 2 𝑜 C 𝑜 x = y x C 𝑜 y
90 89 adantlr Lim x A x C On 2 𝑜 C 𝑜 x = y x C 𝑜 y
91 90 eleq2d Lim x A x C On 2 𝑜 C 𝑜 A C 𝑜 x C 𝑜 A y x C 𝑜 y
92 82 91 sylibrd Lim x A x C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 x
93 92 ex Lim x A x C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y C 𝑜 A C 𝑜 x
94 93 a2d Lim x A x C On 2 𝑜 y x A y C 𝑜 A C 𝑜 y C On 2 𝑜 C 𝑜 A C 𝑜 x
95 64 94 syl5bi Lim x A x y x A y C On 2 𝑜 C 𝑜 A C 𝑜 y C On 2 𝑜 C 𝑜 A C 𝑜 x
96 3 6 9 12 34 60 95 tfindsg2 B On A B C On 2 𝑜 C 𝑜 A C 𝑜 B
97 96 impancom B On C On 2 𝑜 A B C 𝑜 A C 𝑜 B