Step |
Hyp |
Ref |
Expression |
1 |
|
onelon |
|
2 |
1
|
ex |
|
3 |
2
|
adantr |
|
4 |
|
oewordri |
|
5 |
4
|
3adant1 |
|
6 |
|
oecl |
|
7 |
6
|
3adant2 |
|
8 |
|
oecl |
|
9 |
8
|
3adant1 |
|
10 |
|
simp1 |
|
11 |
|
omwordri |
|
12 |
7 9 10 11
|
syl3anc |
|
13 |
5 12
|
syld |
|
14 |
|
oesuc |
|
15 |
14
|
3adant2 |
|
16 |
15
|
sseq1d |
|
17 |
13 16
|
sylibrd |
|
18 |
|
ne0i |
|
19 |
|
on0eln0 |
|
20 |
18 19
|
syl5ibr |
|
21 |
20
|
adantr |
|
22 |
|
oen0 |
|
23 |
22
|
ex |
|
24 |
21 23
|
syld |
|
25 |
|
omordi |
|
26 |
8 25
|
syldanl |
|
27 |
26
|
ex |
|
28 |
27
|
com23 |
|
29 |
24 28
|
mpdd |
|
30 |
29
|
3adant1 |
|
31 |
|
oesuc |
|
32 |
31
|
3adant1 |
|
33 |
32
|
eleq2d |
|
34 |
30 33
|
sylibrd |
|
35 |
17 34
|
jcad |
|
36 |
35
|
3expa |
|
37 |
|
sucelon |
|
38 |
|
oecl |
|
39 |
|
oecl |
|
40 |
|
ontr2 |
|
41 |
38 39 40
|
syl2an |
|
42 |
41
|
anandirs |
|
43 |
37 42
|
sylan2b |
|
44 |
36 43
|
syld |
|
45 |
44
|
exp31 |
|
46 |
45
|
com4l |
|
47 |
46
|
imp |
|
48 |
3 47
|
mpdd |
|