Metamath Proof Explorer


Theorem oesuclem

Description: Lemma for oesuc . (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Hypotheses oesuclem.1 Lim X
oesuclem.2 B X rec x V x 𝑜 A 1 𝑜 suc B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
Assertion oesuclem A On B X A 𝑜 suc B = A 𝑜 B 𝑜 A

Proof

Step Hyp Ref Expression
1 oesuclem.1 Lim X
2 oesuclem.2 B X rec x V x 𝑜 A 1 𝑜 suc B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
3 oveq1 A = A 𝑜 suc B = 𝑜 suc B
4 limord Lim X Ord X
5 1 4 ax-mp Ord X
6 ordelord Ord X B X Ord B
7 5 6 mpan B X Ord B
8 0elsuc Ord B suc B
9 7 8 syl B X suc B
10 limsuc Lim X B X suc B X
11 1 10 ax-mp B X suc B X
12 ordelon Ord X suc B X suc B On
13 5 12 mpan suc B X suc B On
14 oe0m1 suc B On suc B 𝑜 suc B =
15 13 14 syl suc B X suc B 𝑜 suc B =
16 11 15 sylbi B X suc B 𝑜 suc B =
17 9 16 mpbid B X 𝑜 suc B =
18 3 17 sylan9eqr B X A = A 𝑜 suc B =
19 oveq1 A = A 𝑜 B = 𝑜 B
20 id A = A =
21 19 20 oveq12d A = A 𝑜 B 𝑜 A = 𝑜 B 𝑜
22 ordelon Ord X B X B On
23 5 22 mpan B X B On
24 oveq2 B = 𝑜 B = 𝑜
25 oe0m0 𝑜 = 1 𝑜
26 1on 1 𝑜 On
27 25 26 eqeltri 𝑜 On
28 24 27 eqeltrdi B = 𝑜 B On
29 28 adantl B X B = 𝑜 B On
30 oe0m1 B On B 𝑜 B =
31 23 30 syl B X B 𝑜 B =
32 31 biimpa B X B 𝑜 B =
33 0elon On
34 32 33 eqeltrdi B X B 𝑜 B On
35 34 adantll B On B X B 𝑜 B On
36 29 35 oe0lem B On B X 𝑜 B On
37 23 36 mpancom B X 𝑜 B On
38 om0 𝑜 B On 𝑜 B 𝑜 =
39 37 38 syl B X 𝑜 B 𝑜 =
40 21 39 sylan9eqr B X A = A 𝑜 B 𝑜 A =
41 18 40 eqtr4d B X A = A 𝑜 suc B = A 𝑜 B 𝑜 A
42 2 ad2antlr A On B X A rec x V x 𝑜 A 1 𝑜 suc B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
43 11 13 sylbi B X suc B On
44 oevn0 A On suc B On A A 𝑜 suc B = rec x V x 𝑜 A 1 𝑜 suc B
45 43 44 sylanl2 A On B X A A 𝑜 suc B = rec x V x 𝑜 A 1 𝑜 suc B
46 ovex A 𝑜 B V
47 oveq1 x = A 𝑜 B x 𝑜 A = A 𝑜 B 𝑜 A
48 eqid x V x 𝑜 A = x V x 𝑜 A
49 ovex A 𝑜 B 𝑜 A V
50 47 48 49 fvmpt A 𝑜 B V x V x 𝑜 A A 𝑜 B = A 𝑜 B 𝑜 A
51 46 50 ax-mp x V x 𝑜 A A 𝑜 B = A 𝑜 B 𝑜 A
52 oevn0 A On B On A A 𝑜 B = rec x V x 𝑜 A 1 𝑜 B
53 23 52 sylanl2 A On B X A A 𝑜 B = rec x V x 𝑜 A 1 𝑜 B
54 53 fveq2d A On B X A x V x 𝑜 A A 𝑜 B = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
55 51 54 eqtr3id A On B X A A 𝑜 B 𝑜 A = x V x 𝑜 A rec x V x 𝑜 A 1 𝑜 B
56 42 45 55 3eqtr4d A On B X A A 𝑜 suc B = A 𝑜 B 𝑜 A
57 41 56 oe0lem A On B X A 𝑜 suc B = A 𝑜 B 𝑜 A