Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
|
2 |
|
oe0m0 |
|
3 |
1 2
|
eqtrdi |
|
4 |
|
fveq2 |
|
5 |
|
1oex |
|
6 |
5
|
rdg0 |
|
7 |
4 6
|
eqtrdi |
|
8 |
|
inteq |
|
9 |
|
int0 |
|
10 |
8 9
|
eqtrdi |
|
11 |
7 10
|
ineq12d |
|
12 |
|
inv1 |
|
13 |
12
|
a1i |
|
14 |
11 13
|
sylan9eqr |
|
15 |
3 14
|
eqtr4d |
|
16 |
|
oveq1 |
|
17 |
|
oe0m1 |
|
18 |
17
|
biimpa |
|
19 |
16 18
|
sylan9eqr |
|
20 |
19
|
an32s |
|
21 |
|
int0el |
|
22 |
21
|
ineq2d |
|
23 |
|
in0 |
|
24 |
22 23
|
eqtrdi |
|
25 |
24
|
adantl |
|
26 |
20 25
|
eqtr4d |
|
27 |
15 26
|
oe0lem |
|
28 |
|
inteq |
|
29 |
28 9
|
eqtrdi |
|
30 |
29
|
difeq2d |
|
31 |
|
difid |
|
32 |
30 31
|
eqtrdi |
|
33 |
32
|
uneq2d |
|
34 |
|
uncom |
|
35 |
|
un0 |
|
36 |
33 34 35
|
3eqtr3g |
|
37 |
36
|
adantl |
|
38 |
37
|
ineq2d |
|
39 |
27 38
|
eqtr4d |
|
40 |
|
oevn0 |
|
41 |
|
int0el |
|
42 |
41
|
difeq2d |
|
43 |
|
dif0 |
|
44 |
42 43
|
eqtrdi |
|
45 |
44
|
uneq2d |
|
46 |
|
unv |
|
47 |
45 34 46
|
3eqtr3g |
|
48 |
47
|
adantl |
|
49 |
48
|
ineq2d |
|
50 |
|
inv1 |
|
51 |
49 50
|
eqtr2di |
|
52 |
40 51
|
eqtrd |
|
53 |
39 52
|
oe0lem |
|