Metamath Proof Explorer


Theorem oevn0

Description: Value of ordinal exponentiation at a nonzero base. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oevn0 AOnBOnAA𝑜B=recxVx𝑜A1𝑜B

Proof

Step Hyp Ref Expression
1 on0eln0 AOnAA
2 df-ne A¬A=
3 1 2 bitrdi AOnA¬A=
4 3 adantr AOnBOnA¬A=
5 oev AOnBOnA𝑜B=ifA=1𝑜BrecxVx𝑜A1𝑜B
6 iffalse ¬A=ifA=1𝑜BrecxVx𝑜A1𝑜B=recxVx𝑜A1𝑜B
7 5 6 sylan9eq AOnBOn¬A=A𝑜B=recxVx𝑜A1𝑜B
8 7 ex AOnBOn¬A=A𝑜B=recxVx𝑜A1𝑜B
9 4 8 sylbid AOnBOnAA𝑜B=recxVx𝑜A1𝑜B
10 9 imp AOnBOnAA𝑜B=recxVx𝑜A1𝑜B