Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
sseq12d |
|
4 |
|
oveq2 |
|
5 |
|
oveq2 |
|
6 |
4 5
|
sseq12d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
7 8
|
sseq12d |
|
10 |
|
oveq2 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
sseq12d |
|
13 |
|
onelon |
|
14 |
|
oe0 |
|
15 |
13 14
|
syl |
|
16 |
|
oe0 |
|
17 |
16
|
adantr |
|
18 |
15 17
|
eqtr4d |
|
19 |
|
eqimss |
|
20 |
18 19
|
syl |
|
21 |
|
simpl |
|
22 |
|
onelss |
|
23 |
22
|
imp |
|
24 |
13 21 23
|
jca31 |
|
25 |
|
oecl |
|
26 |
25
|
3adant2 |
|
27 |
|
oecl |
|
28 |
27
|
3adant1 |
|
29 |
|
simp1 |
|
30 |
|
omwordri |
|
31 |
26 28 29 30
|
syl3anc |
|
32 |
31
|
imp |
|
33 |
32
|
adantrl |
|
34 |
|
omwordi |
|
35 |
28 34
|
syld3an3 |
|
36 |
35
|
imp |
|
37 |
36
|
adantrr |
|
38 |
33 37
|
sstrd |
|
39 |
|
oesuc |
|
40 |
39
|
3adant2 |
|
41 |
40
|
adantr |
|
42 |
|
oesuc |
|
43 |
42
|
3adant1 |
|
44 |
43
|
adantr |
|
45 |
38 41 44
|
3sstr4d |
|
46 |
45
|
exp520 |
|
47 |
46
|
com3r |
|
48 |
47
|
imp4c |
|
49 |
24 48
|
syl5 |
|
50 |
|
vex |
|
51 |
|
limelon |
|
52 |
50 51
|
mpan |
|
53 |
|
0ellim |
|
54 |
|
oe0m1 |
|
55 |
54
|
biimpa |
|
56 |
52 53 55
|
syl2anc |
|
57 |
|
0ss |
|
58 |
56 57
|
eqsstrdi |
|
59 |
|
oveq1 |
|
60 |
59
|
sseq1d |
|
61 |
58 60
|
syl5ibr |
|
62 |
61
|
adantl |
|
63 |
62
|
a1dd |
|
64 |
|
ss2iun |
|
65 |
|
oelim |
|
66 |
50 65
|
mpanlr1 |
|
67 |
66
|
an32s |
|
68 |
67
|
adantllr |
|
69 |
21
|
anim1i |
|
70 |
|
ne0i |
|
71 |
|
on0eln0 |
|
72 |
70 71
|
syl5ibr |
|
73 |
72
|
imp |
|
74 |
73
|
adantr |
|
75 |
|
oelim |
|
76 |
50 75
|
mpanlr1 |
|
77 |
69 74 76
|
syl2anc |
|
78 |
77
|
ad4ant24 |
|
79 |
68 78
|
sseq12d |
|
80 |
64 79
|
syl5ibr |
|
81 |
80
|
ex |
|
82 |
63 81
|
oe0lem |
|
83 |
13
|
ancri |
|
84 |
82 83
|
syl11 |
|
85 |
3 6 9 12 20 49 84
|
tfinds3 |
|
86 |
85
|
expd |
|
87 |
86
|
impcom |
|