Metamath Proof Explorer


Theorem oewordri

Description: Weak ordering property of ordinal exponentiation. Proposition 8.35 of TakeutiZaring p. 68. (Contributed by NM, 6-Jan-2005)

Ref Expression
Assertion oewordri B On C On A B A 𝑜 C B 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = A 𝑜 x = A 𝑜
2 oveq2 x = B 𝑜 x = B 𝑜
3 1 2 sseq12d x = A 𝑜 x B 𝑜 x A 𝑜 B 𝑜
4 oveq2 x = y A 𝑜 x = A 𝑜 y
5 oveq2 x = y B 𝑜 x = B 𝑜 y
6 4 5 sseq12d x = y A 𝑜 x B 𝑜 x A 𝑜 y B 𝑜 y
7 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
8 oveq2 x = suc y B 𝑜 x = B 𝑜 suc y
9 7 8 sseq12d x = suc y A 𝑜 x B 𝑜 x A 𝑜 suc y B 𝑜 suc y
10 oveq2 x = C A 𝑜 x = A 𝑜 C
11 oveq2 x = C B 𝑜 x = B 𝑜 C
12 10 11 sseq12d x = C A 𝑜 x B 𝑜 x A 𝑜 C B 𝑜 C
13 onelon B On A B A On
14 oe0 A On A 𝑜 = 1 𝑜
15 13 14 syl B On A B A 𝑜 = 1 𝑜
16 oe0 B On B 𝑜 = 1 𝑜
17 16 adantr B On A B B 𝑜 = 1 𝑜
18 15 17 eqtr4d B On A B A 𝑜 = B 𝑜
19 eqimss A 𝑜 = B 𝑜 A 𝑜 B 𝑜
20 18 19 syl B On A B A 𝑜 B 𝑜
21 simpl B On A B B On
22 onelss B On A B A B
23 22 imp B On A B A B
24 13 21 23 jca31 B On A B A On B On A B
25 oecl A On y On A 𝑜 y On
26 25 3adant2 A On B On y On A 𝑜 y On
27 oecl B On y On B 𝑜 y On
28 27 3adant1 A On B On y On B 𝑜 y On
29 simp1 A On B On y On A On
30 omwordri A 𝑜 y On B 𝑜 y On A On A 𝑜 y B 𝑜 y A 𝑜 y 𝑜 A B 𝑜 y 𝑜 A
31 26 28 29 30 syl3anc A On B On y On A 𝑜 y B 𝑜 y A 𝑜 y 𝑜 A B 𝑜 y 𝑜 A
32 31 imp A On B On y On A 𝑜 y B 𝑜 y A 𝑜 y 𝑜 A B 𝑜 y 𝑜 A
33 32 adantrl A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 y 𝑜 A B 𝑜 y 𝑜 A
34 omwordi A On B On B 𝑜 y On A B B 𝑜 y 𝑜 A B 𝑜 y 𝑜 B
35 28 34 syld3an3 A On B On y On A B B 𝑜 y 𝑜 A B 𝑜 y 𝑜 B
36 35 imp A On B On y On A B B 𝑜 y 𝑜 A B 𝑜 y 𝑜 B
37 36 adantrr A On B On y On A B A 𝑜 y B 𝑜 y B 𝑜 y 𝑜 A B 𝑜 y 𝑜 B
38 33 37 sstrd A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 y 𝑜 A B 𝑜 y 𝑜 B
39 oesuc A On y On A 𝑜 suc y = A 𝑜 y 𝑜 A
40 39 3adant2 A On B On y On A 𝑜 suc y = A 𝑜 y 𝑜 A
41 40 adantr A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y = A 𝑜 y 𝑜 A
42 oesuc B On y On B 𝑜 suc y = B 𝑜 y 𝑜 B
43 42 3adant1 A On B On y On B 𝑜 suc y = B 𝑜 y 𝑜 B
44 43 adantr A On B On y On A B A 𝑜 y B 𝑜 y B 𝑜 suc y = B 𝑜 y 𝑜 B
45 38 41 44 3sstr4d A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
46 45 exp520 A On B On y On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
47 46 com3r y On A On B On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
48 47 imp4c y On A On B On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
49 24 48 syl5 y On B On A B A 𝑜 y B 𝑜 y A 𝑜 suc y B 𝑜 suc y
50 vex x V
51 limelon x V Lim x x On
52 50 51 mpan Lim x x On
53 0ellim Lim x x
54 oe0m1 x On x 𝑜 x =
55 54 biimpa x On x 𝑜 x =
56 52 53 55 syl2anc Lim x 𝑜 x =
57 0ss B 𝑜 x
58 56 57 eqsstrdi Lim x 𝑜 x B 𝑜 x
59 oveq1 A = A 𝑜 x = 𝑜 x
60 59 sseq1d A = A 𝑜 x B 𝑜 x 𝑜 x B 𝑜 x
61 58 60 syl5ibr A = Lim x A 𝑜 x B 𝑜 x
62 61 adantl B On A B A = Lim x A 𝑜 x B 𝑜 x
63 62 a1dd B On A B A = Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
64 ss2iun y x A 𝑜 y B 𝑜 y y x A 𝑜 y y x B 𝑜 y
65 oelim A On x V Lim x A A 𝑜 x = y x A 𝑜 y
66 50 65 mpanlr1 A On Lim x A A 𝑜 x = y x A 𝑜 y
67 66 an32s A On A Lim x A 𝑜 x = y x A 𝑜 y
68 67 adantllr A On B On A B A Lim x A 𝑜 x = y x A 𝑜 y
69 21 anim1i B On A B Lim x B On Lim x
70 ne0i A B B
71 on0eln0 B On B B
72 70 71 syl5ibr B On A B B
73 72 imp B On A B B
74 73 adantr B On A B Lim x B
75 oelim B On x V Lim x B B 𝑜 x = y x B 𝑜 y
76 50 75 mpanlr1 B On Lim x B B 𝑜 x = y x B 𝑜 y
77 69 74 76 syl2anc B On A B Lim x B 𝑜 x = y x B 𝑜 y
78 77 ad4ant24 A On B On A B A Lim x B 𝑜 x = y x B 𝑜 y
79 68 78 sseq12d A On B On A B A Lim x A 𝑜 x B 𝑜 x y x A 𝑜 y y x B 𝑜 y
80 64 79 syl5ibr A On B On A B A Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
81 80 ex A On B On A B A Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
82 63 81 oe0lem A On B On A B Lim x y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
83 13 ancri B On A B A On B On A B
84 82 83 syl11 Lim x B On A B y x A 𝑜 y B 𝑜 y A 𝑜 x B 𝑜 x
85 3 6 9 12 20 49 84 tfinds3 C On B On A B A 𝑜 C B 𝑜 C
86 85 expd C On B On A B A 𝑜 C B 𝑜 C
87 86 impcom B On C On A B A 𝑜 C B 𝑜 C