| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|
| 2 |
|
odd2np1 |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
biimpa |
|
| 5 |
4
|
3adant1 |
|
| 6 |
|
simpl1 |
|
| 7 |
|
simprr |
|
| 8 |
|
simpl2 |
|
| 9 |
8
|
nncnd |
|
| 10 |
|
1cnd |
|
| 11 |
|
2z |
|
| 12 |
|
simprl |
|
| 13 |
|
zmulcl |
|
| 14 |
11 12 13
|
sylancr |
|
| 15 |
14
|
zcnd |
|
| 16 |
9 10 15
|
subadd2d |
|
| 17 |
7 16
|
mpbird |
|
| 18 |
|
nnm1nn0 |
|
| 19 |
8 18
|
syl |
|
| 20 |
17 19
|
eqeltrrd |
|
| 21 |
6 20
|
expcld |
|
| 22 |
21 6
|
mulneg2d |
|
| 23 |
|
sqneg |
|
| 24 |
6 23
|
syl |
|
| 25 |
24
|
oveq1d |
|
| 26 |
6
|
negcld |
|
| 27 |
|
2rp |
|
| 28 |
27
|
a1i |
|
| 29 |
12
|
zred |
|
| 30 |
20
|
nn0ge0d |
|
| 31 |
28 29 30
|
prodge0rd |
|
| 32 |
|
elnn0z |
|
| 33 |
12 31 32
|
sylanbrc |
|
| 34 |
|
2nn0 |
|
| 35 |
34
|
a1i |
|
| 36 |
26 33 35
|
expmuld |
|
| 37 |
6 33 35
|
expmuld |
|
| 38 |
25 36 37
|
3eqtr4d |
|
| 39 |
38
|
oveq1d |
|
| 40 |
26 20
|
expp1d |
|
| 41 |
7
|
oveq2d |
|
| 42 |
40 41
|
eqtr3d |
|
| 43 |
39 42
|
eqtr3d |
|
| 44 |
22 43
|
eqtr3d |
|
| 45 |
6 20
|
expp1d |
|
| 46 |
7
|
oveq2d |
|
| 47 |
45 46
|
eqtr3d |
|
| 48 |
47
|
negeqd |
|
| 49 |
44 48
|
eqtr3d |
|
| 50 |
5 49
|
rexlimddv |
|