Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|
2 |
|
odd2np1 |
|
3 |
1 2
|
syl |
|
4 |
3
|
biimpa |
|
5 |
4
|
3adant1 |
|
6 |
|
simpl1 |
|
7 |
|
simprr |
|
8 |
|
simpl2 |
|
9 |
8
|
nncnd |
|
10 |
|
1cnd |
|
11 |
|
2z |
|
12 |
|
simprl |
|
13 |
|
zmulcl |
|
14 |
11 12 13
|
sylancr |
|
15 |
14
|
zcnd |
|
16 |
9 10 15
|
subadd2d |
|
17 |
7 16
|
mpbird |
|
18 |
|
nnm1nn0 |
|
19 |
8 18
|
syl |
|
20 |
17 19
|
eqeltrrd |
|
21 |
6 20
|
expcld |
|
22 |
21 6
|
mulneg2d |
|
23 |
|
sqneg |
|
24 |
6 23
|
syl |
|
25 |
24
|
oveq1d |
|
26 |
6
|
negcld |
|
27 |
|
2rp |
|
28 |
27
|
a1i |
|
29 |
12
|
zred |
|
30 |
20
|
nn0ge0d |
|
31 |
28 29 30
|
prodge0rd |
|
32 |
|
elnn0z |
|
33 |
12 31 32
|
sylanbrc |
|
34 |
|
2nn0 |
|
35 |
34
|
a1i |
|
36 |
26 33 35
|
expmuld |
|
37 |
6 33 35
|
expmuld |
|
38 |
25 36 37
|
3eqtr4d |
|
39 |
38
|
oveq1d |
|
40 |
26 20
|
expp1d |
|
41 |
7
|
oveq2d |
|
42 |
40 41
|
eqtr3d |
|
43 |
39 42
|
eqtr3d |
|
44 |
22 43
|
eqtr3d |
|
45 |
6 20
|
expp1d |
|
46 |
7
|
oveq2d |
|
47 |
45 46
|
eqtr3d |
|
48 |
47
|
negeqd |
|
49 |
44 48
|
eqtr3d |
|
50 |
5 49
|
rexlimddv |
|