Metamath Proof Explorer


Theorem ofc1

Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses ofc1.1 φ A V
ofc1.2 φ B W
ofc1.3 φ F Fn A
ofc1.4 φ X A F X = C
Assertion ofc1 φ X A A × B R f F X = B R C

Proof

Step Hyp Ref Expression
1 ofc1.1 φ A V
2 ofc1.2 φ B W
3 ofc1.3 φ F Fn A
4 ofc1.4 φ X A F X = C
5 fnconstg B W A × B Fn A
6 2 5 syl φ A × B Fn A
7 inidm A A = A
8 fvconst2g B W X A A × B X = B
9 2 8 sylan φ X A A × B X = B
10 6 3 1 1 7 9 4 ofval φ X A A × B R f F X = B R C