Metamath Proof Explorer


Theorem ofco

Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014)

Ref Expression
Hypotheses ofco.1 φ F Fn A
ofco.2 φ G Fn B
ofco.3 φ H : D C
ofco.4 φ A V
ofco.5 φ B W
ofco.6 φ D X
ofco.7 A B = C
Assertion ofco φ F R f G H = F H R f G H

Proof

Step Hyp Ref Expression
1 ofco.1 φ F Fn A
2 ofco.2 φ G Fn B
3 ofco.3 φ H : D C
4 ofco.4 φ A V
5 ofco.5 φ B W
6 ofco.6 φ D X
7 ofco.7 A B = C
8 3 ffvelrnda φ x D H x C
9 3 feqmptd φ H = x D H x
10 eqidd φ y A F y = F y
11 eqidd φ y B G y = G y
12 1 2 4 5 7 10 11 offval φ F R f G = y C F y R G y
13 fveq2 y = H x F y = F H x
14 fveq2 y = H x G y = G H x
15 13 14 oveq12d y = H x F y R G y = F H x R G H x
16 8 9 12 15 fmptco φ F R f G H = x D F H x R G H x
17 inss1 A B A
18 7 17 eqsstrri C A
19 fss H : D C C A H : D A
20 3 18 19 sylancl φ H : D A
21 fnfco F Fn A H : D A F H Fn D
22 1 20 21 syl2anc φ F H Fn D
23 inss2 A B B
24 7 23 eqsstrri C B
25 fss H : D C C B H : D B
26 3 24 25 sylancl φ H : D B
27 fnfco G Fn B H : D B G H Fn D
28 2 26 27 syl2anc φ G H Fn D
29 inidm D D = D
30 3 ffnd φ H Fn D
31 fvco2 H Fn D x D F H x = F H x
32 30 31 sylan φ x D F H x = F H x
33 fvco2 H Fn D x D G H x = G H x
34 30 33 sylan φ x D G H x = G H x
35 22 28 6 6 29 32 34 offval φ F H R f G H = x D F H x R G H x
36 16 35 eqtr4d φ F R f G H = F H R f G H