Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Function operation
ofeq
Next ⟩
ofreq
Metamath Proof Explorer
Ascii
Unicode
Theorem
ofeq
Description:
Equality theorem for function operation.
(Contributed by
Mario Carneiro
, 20-Jul-2014)
Ref
Expression
Assertion
ofeq
⊢
R
=
S
→
∘
f
⁡
R
=
∘
f
⁡
S
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
R
=
S
∧
f
∈
V
∧
g
∈
V
→
R
=
S
2
1
oveqd
⊢
R
=
S
∧
f
∈
V
∧
g
∈
V
→
f
⁡
x
R
g
⁡
x
=
f
⁡
x
S
g
⁡
x
3
2
mpteq2dv
⊢
R
=
S
∧
f
∈
V
∧
g
∈
V
→
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
R
g
⁡
x
=
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
S
g
⁡
x
4
3
mpoeq3dva
⊢
R
=
S
→
f
∈
V
,
g
∈
V
⟼
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
R
g
⁡
x
=
f
∈
V
,
g
∈
V
⟼
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
S
g
⁡
x
5
df-of
⊢
∘
f
⁡
R
=
f
∈
V
,
g
∈
V
⟼
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
R
g
⁡
x
6
df-of
⊢
∘
f
⁡
S
=
f
∈
V
,
g
∈
V
⟼
x
∈
dom
⁡
f
∩
dom
⁡
g
⟼
f
⁡
x
S
g
⁡
x
7
4
5
6
3eqtr4g
⊢
R
=
S
→
∘
f
⁡
R
=
∘
f
⁡
S