Metamath Proof Explorer


Theorem ofeq

Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Assertion ofeq R = S f R = f S

Proof

Step Hyp Ref Expression
1 simp1 R = S f V g V R = S
2 1 oveqd R = S f V g V f x R g x = f x S g x
3 2 mpteq2dv R = S f V g V x dom f dom g f x R g x = x dom f dom g f x S g x
4 3 mpoeq3dva R = S f V , g V x dom f dom g f x R g x = f V , g V x dom f dom g f x S g x
5 df-of f R = f V , g V x dom f dom g f x R g x
6 df-of f S = f V , g V x dom f dom g f x S g x
7 4 5 6 3eqtr4g R = S f R = f S