Metamath Proof Explorer


Theorem ofexg

Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014)

Ref Expression
Assertion ofexg A V f R A V

Proof

Step Hyp Ref Expression
1 df-of f R = f V , g V x dom f dom g f x R g x
2 1 mpofun Fun f R
3 resfunexg Fun f R A V f R A V
4 2 3 mpan A V f R A V