Metamath Proof Explorer


Theorem offn

Description: The function operation produces a function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses offval.1 φ F Fn A
offval.2 φ G Fn B
offval.3 φ A V
offval.4 φ B W
offval.5 A B = S
Assertion offn φ F R f G Fn S

Proof

Step Hyp Ref Expression
1 offval.1 φ F Fn A
2 offval.2 φ G Fn B
3 offval.3 φ A V
4 offval.4 φ B W
5 offval.5 A B = S
6 ovex F x R G x V
7 eqid x S F x R G x = x S F x R G x
8 6 7 fnmpti x S F x R G x Fn S
9 eqidd φ x A F x = F x
10 eqidd φ x B G x = G x
11 1 2 3 4 5 9 10 offval φ F R f G = x S F x R G x
12 11 fneq1d φ F R f G Fn S x S F x R G x Fn S
13 8 12 mpbiri φ F R f G Fn S