Metamath Proof Explorer


Theorem offres

Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion offres F V G W F R f G D = F D R f G D

Proof

Step Hyp Ref Expression
1 elinel2 x dom F dom G D x D
2 fvres x D F D x = F x
3 fvres x D G D x = G x
4 2 3 oveq12d x D F D x R G D x = F x R G x
5 1 4 syl x dom F dom G D F D x R G D x = F x R G x
6 5 mpteq2ia x dom F dom G D F D x R G D x = x dom F dom G D F x R G x
7 inindi D dom F dom G = D dom F D dom G
8 incom dom F dom G D = D dom F dom G
9 dmres dom F D = D dom F
10 dmres dom G D = D dom G
11 9 10 ineq12i dom F D dom G D = D dom F D dom G
12 7 8 11 3eqtr4ri dom F D dom G D = dom F dom G D
13 12 mpteq1i x dom F D dom G D F D x R G D x = x dom F dom G D F D x R G D x
14 resmpt3 x dom F dom G F x R G x D = x dom F dom G D F x R G x
15 6 13 14 3eqtr4ri x dom F dom G F x R G x D = x dom F D dom G D F D x R G D x
16 offval3 F V G W F R f G = x dom F dom G F x R G x
17 16 reseq1d F V G W F R f G D = x dom F dom G F x R G x D
18 resexg F V F D V
19 resexg G W G D V
20 offval3 F D V G D V F D R f G D = x dom F D dom G D F D x R G D x
21 18 19 20 syl2an F V G W F D R f G D = x dom F D dom G D F D x R G D x
22 15 17 21 3eqtr4a F V G W F R f G D = F D R f G D