Metamath Proof Explorer


Theorem offun

Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024)

Ref Expression
Hypotheses offun.1 φ F Fn A
offun.2 φ G Fn B
offun.3 φ A V
offun.4 φ B W
Assertion offun φ Fun F R f G

Proof

Step Hyp Ref Expression
1 offun.1 φ F Fn A
2 offun.2 φ G Fn B
3 offun.3 φ A V
4 offun.4 φ B W
5 eqid A B = A B
6 1 2 3 4 5 offn φ F R f G Fn A B
7 fnfun F R f G Fn A B Fun F R f G
8 6 7 syl φ Fun F R f G