Metamath Proof Explorer


Theorem offval

Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses offval.1 φ F Fn A
offval.2 φ G Fn B
offval.3 φ A V
offval.4 φ B W
offval.5 A B = S
offval.6 φ x A F x = C
offval.7 φ x B G x = D
Assertion offval φ F R f G = x S C R D

Proof

Step Hyp Ref Expression
1 offval.1 φ F Fn A
2 offval.2 φ G Fn B
3 offval.3 φ A V
4 offval.4 φ B W
5 offval.5 A B = S
6 offval.6 φ x A F x = C
7 offval.7 φ x B G x = D
8 fnex F Fn A A V F V
9 1 3 8 syl2anc φ F V
10 fnex G Fn B B W G V
11 2 4 10 syl2anc φ G V
12 1 fndmd φ dom F = A
13 2 fndmd φ dom G = B
14 12 13 ineq12d φ dom F dom G = A B
15 14 5 eqtrdi φ dom F dom G = S
16 15 mpteq1d φ x dom F dom G F x R G x = x S F x R G x
17 inex1g A V A B V
18 5 17 eqeltrrid A V S V
19 mptexg S V x S F x R G x V
20 3 18 19 3syl φ x S F x R G x V
21 16 20 eqeltrd φ x dom F dom G F x R G x V
22 dmeq f = F dom f = dom F
23 dmeq g = G dom g = dom G
24 22 23 ineqan12d f = F g = G dom f dom g = dom F dom G
25 fveq1 f = F f x = F x
26 fveq1 g = G g x = G x
27 25 26 oveqan12d f = F g = G f x R g x = F x R G x
28 24 27 mpteq12dv f = F g = G x dom f dom g f x R g x = x dom F dom G F x R G x
29 df-of f R = f V , g V x dom f dom g f x R g x
30 28 29 ovmpoga F V G V x dom F dom G F x R G x V F R f G = x dom F dom G F x R G x
31 9 11 21 30 syl3anc φ F R f G = x dom F dom G F x R G x
32 5 eleq2i x A B x S
33 elin x A B x A x B
34 32 33 bitr3i x S x A x B
35 6 adantrr φ x A x B F x = C
36 7 adantrl φ x A x B G x = D
37 35 36 oveq12d φ x A x B F x R G x = C R D
38 34 37 sylan2b φ x S F x R G x = C R D
39 38 mpteq2dva φ x S F x R G x = x S C R D
40 31 16 39 3eqtrd φ F R f G = x S C R D