Metamath Proof Explorer


Theorem offval2f

Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017)

Ref Expression
Hypotheses offval2f.0 x φ
offval2f.a _ x A
offval2f.1 φ A V
offval2f.2 φ x A B W
offval2f.3 φ x A C X
offval2f.4 φ F = x A B
offval2f.5 φ G = x A C
Assertion offval2f φ F R f G = x A B R C

Proof

Step Hyp Ref Expression
1 offval2f.0 x φ
2 offval2f.a _ x A
3 offval2f.1 φ A V
4 offval2f.2 φ x A B W
5 offval2f.3 φ x A C X
6 offval2f.4 φ F = x A B
7 offval2f.5 φ G = x A C
8 4 ex φ x A B W
9 1 8 ralrimi φ x A B W
10 2 fnmptf x A B W x A B Fn A
11 9 10 syl φ x A B Fn A
12 6 fneq1d φ F Fn A x A B Fn A
13 11 12 mpbird φ F Fn A
14 5 ex φ x A C X
15 1 14 ralrimi φ x A C X
16 2 fnmptf x A C X x A C Fn A
17 15 16 syl φ x A C Fn A
18 7 fneq1d φ G Fn A x A C Fn A
19 17 18 mpbird φ G Fn A
20 inidm A A = A
21 6 adantr φ y A F = x A B
22 21 fveq1d φ y A F y = x A B y
23 7 adantr φ y A G = x A C
24 23 fveq1d φ y A G y = x A C y
25 13 19 3 3 20 22 24 offval φ F R f G = y A x A B y R x A C y
26 nfcv _ y A
27 nffvmpt1 _ x x A B y
28 nfcv _ x R
29 nffvmpt1 _ x x A C y
30 27 28 29 nfov _ x x A B y R x A C y
31 nfcv _ y x A B x R x A C x
32 fveq2 y = x x A B y = x A B x
33 fveq2 y = x x A C y = x A C x
34 32 33 oveq12d y = x x A B y R x A C y = x A B x R x A C x
35 26 2 30 31 34 cbvmptf y A x A B y R x A C y = x A x A B x R x A C x
36 simpr φ x A x A
37 2 fvmpt2f x A B W x A B x = B
38 36 4 37 syl2anc φ x A x A B x = B
39 2 fvmpt2f x A C X x A C x = C
40 36 5 39 syl2anc φ x A x A C x = C
41 38 40 oveq12d φ x A x A B x R x A C x = B R C
42 1 41 mpteq2da φ x A x A B x R x A C x = x A B R C
43 35 42 eqtrid φ y A x A B y R x A C y = x A B R C
44 25 43 eqtrd φ F R f G = x A B R C