Metamath Proof Explorer


Theorem offval3

Description: General value of ( F oF R G ) with no assumptions on functionality of F and G . (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion offval3 F V G W F R f G = x dom F dom G F x R G x

Proof

Step Hyp Ref Expression
1 elex F V F V
2 1 adantr F V G W F V
3 elex G W G V
4 3 adantl F V G W G V
5 dmexg F V dom F V
6 inex1g dom F V dom F dom G V
7 mptexg dom F dom G V x dom F dom G F x R G x V
8 5 6 7 3syl F V x dom F dom G F x R G x V
9 8 adantr F V G W x dom F dom G F x R G x V
10 dmeq a = F dom a = dom F
11 dmeq b = G dom b = dom G
12 10 11 ineqan12d a = F b = G dom a dom b = dom F dom G
13 fveq1 a = F a x = F x
14 fveq1 b = G b x = G x
15 13 14 oveqan12d a = F b = G a x R b x = F x R G x
16 12 15 mpteq12dv a = F b = G x dom a dom b a x R b x = x dom F dom G F x R G x
17 df-of f R = a V , b V x dom a dom b a x R b x
18 16 17 ovmpoga F V G V x dom F dom G F x R G x V F R f G = x dom F dom G F x R G x
19 2 4 9 18 syl3anc F V G W F R f G = x dom F dom G F x R G x