Metamath Proof Explorer


Theorem ofldchr

Description: The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018) (Proof shortened by AV, 6-Oct-2020)

Ref Expression
Assertion ofldchr F oField chr F = 0

Proof

Step Hyp Ref Expression
1 eqid od F = od F
2 eqid 1 F = 1 F
3 eqid chr F = chr F
4 1 2 3 chrval od F 1 F = chr F
5 ofldfld F oField F Field
6 isfld F Field F DivRing F CRing
7 6 simplbi F Field F DivRing
8 drngring F DivRing F Ring
9 5 7 8 3syl F oField F Ring
10 eqid Base F = Base F
11 10 2 ringidcl F Ring 1 F Base F
12 eqid F = F
13 eqid 0 F = 0 F
14 eqid y | y F 1 F = 0 F = y | y F 1 F = 0 F
15 10 12 13 1 14 odval 1 F Base F od F 1 F = if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F <
16 9 11 15 3syl F oField od F 1 F = if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F <
17 oveq1 n = 1 n F 1 F = 1 F 1 F
18 17 breq2d n = 1 0 F < F n F 1 F 0 F < F 1 F 1 F
19 18 imbi2d n = 1 F oField 0 F < F n F 1 F F oField 0 F < F 1 F 1 F
20 oveq1 n = m n F 1 F = m F 1 F
21 20 breq2d n = m 0 F < F n F 1 F 0 F < F m F 1 F
22 21 imbi2d n = m F oField 0 F < F n F 1 F F oField 0 F < F m F 1 F
23 oveq1 n = m + 1 n F 1 F = m + 1 F 1 F
24 23 breq2d n = m + 1 0 F < F n F 1 F 0 F < F m + 1 F 1 F
25 24 imbi2d n = m + 1 F oField 0 F < F n F 1 F F oField 0 F < F m + 1 F 1 F
26 oveq1 n = y n F 1 F = y F 1 F
27 26 breq2d n = y 0 F < F n F 1 F 0 F < F y F 1 F
28 27 imbi2d n = y F oField 0 F < F n F 1 F F oField 0 F < F y F 1 F
29 eqid < F = < F
30 13 2 29 ofldlt1 F oField 0 F < F 1 F
31 9 11 syl F oField 1 F Base F
32 10 12 mulg1 1 F Base F 1 F 1 F = 1 F
33 31 32 syl F oField 1 F 1 F = 1 F
34 30 33 breqtrrd F oField 0 F < F 1 F 1 F
35 ofldtos F oField F Toset
36 tospos F Toset F Poset
37 35 36 syl F oField F Poset
38 37 ad2antlr m F oField 0 F < F m F 1 F F Poset
39 9 ringgrpd F oField F Grp
40 39 ad2antlr m F oField 0 F < F m F 1 F F Grp
41 10 13 grpidcl F Grp 0 F Base F
42 40 41 syl m F oField 0 F < F m F 1 F 0 F Base F
43 40 grpmgmd m F oField 0 F < F m F 1 F F Mgm
44 simpll m F oField 0 F < F m F 1 F m
45 31 ad2antlr m F oField 0 F < F m F 1 F 1 F Base F
46 10 12 mulgnncl F Mgm m 1 F Base F m F 1 F Base F
47 43 44 45 46 syl3anc m F oField 0 F < F m F 1 F m F 1 F Base F
48 44 peano2nnd m F oField 0 F < F m F 1 F m + 1
49 10 12 mulgnncl F Mgm m + 1 1 F Base F m + 1 F 1 F Base F
50 43 48 45 49 syl3anc m F oField 0 F < F m F 1 F m + 1 F 1 F Base F
51 42 47 50 3jca m F oField 0 F < F m F 1 F 0 F Base F m F 1 F Base F m + 1 F 1 F Base F
52 simpr m F oField 0 F < F m F 1 F 0 F < F m F 1 F
53 simplr m F oField 0 F < F m F 1 F F oField
54 isofld F oField F Field F oRing
55 54 simprbi F oField F oRing
56 orngogrp F oRing F oGrp
57 53 55 56 3syl m F oField 0 F < F m F 1 F F oGrp
58 30 ad2antlr m F oField 0 F < F m F 1 F 0 F < F 1 F
59 eqid + F = + F
60 10 29 59 ogrpaddlt F oGrp 0 F Base F 1 F Base F m F 1 F Base F 0 F < F 1 F 0 F + F m F 1 F < F 1 F + F m F 1 F
61 57 42 45 47 58 60 syl131anc m F oField 0 F < F m F 1 F 0 F + F m F 1 F < F 1 F + F m F 1 F
62 10 59 13 40 47 grplidd m F oField 0 F < F m F 1 F 0 F + F m F 1 F = m F 1 F
63 62 eqcomd m F oField 0 F < F m F 1 F m F 1 F = 0 F + F m F 1 F
64 10 12 59 mulgnnp1 m 1 F Base F m + 1 F 1 F = m F 1 F + F 1 F
65 44 45 64 syl2anc m F oField 0 F < F m F 1 F m + 1 F 1 F = m F 1 F + F 1 F
66 ringcmn F Ring F CMnd
67 53 9 66 3syl m F oField 0 F < F m F 1 F F CMnd
68 10 59 cmncom F CMnd m F 1 F Base F 1 F Base F m F 1 F + F 1 F = 1 F + F m F 1 F
69 67 47 45 68 syl3anc m F oField 0 F < F m F 1 F m F 1 F + F 1 F = 1 F + F m F 1 F
70 65 69 eqtrd m F oField 0 F < F m F 1 F m + 1 F 1 F = 1 F + F m F 1 F
71 61 63 70 3brtr4d m F oField 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F
72 10 29 plttr F Poset 0 F Base F m F 1 F Base F m + 1 F 1 F Base F 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F 0 F < F m + 1 F 1 F
73 72 imp F Poset 0 F Base F m F 1 F Base F m + 1 F 1 F Base F 0 F < F m F 1 F m F 1 F < F m + 1 F 1 F 0 F < F m + 1 F 1 F
74 38 51 52 71 73 syl22anc m F oField 0 F < F m F 1 F 0 F < F m + 1 F 1 F
75 74 exp31 m F oField 0 F < F m F 1 F 0 F < F m + 1 F 1 F
76 75 a2d m F oField 0 F < F m F 1 F F oField 0 F < F m + 1 F 1 F
77 19 22 25 28 34 76 nnind y F oField 0 F < F y F 1 F
78 77 impcom F oField y 0 F < F y F 1 F
79 fvex 0 F V
80 ovex y F 1 F V
81 29 pltne F oField 0 F V y F 1 F V 0 F < F y F 1 F 0 F y F 1 F
82 79 80 81 mp3an23 F oField 0 F < F y F 1 F 0 F y F 1 F
83 82 adantr F oField y 0 F < F y F 1 F 0 F y F 1 F
84 78 83 mpd F oField y 0 F y F 1 F
85 84 necomd F oField y y F 1 F 0 F
86 85 neneqd F oField y ¬ y F 1 F = 0 F
87 86 ralrimiva F oField y ¬ y F 1 F = 0 F
88 rabeq0 y | y F 1 F = 0 F = y ¬ y F 1 F = 0 F
89 87 88 sylibr F oField y | y F 1 F = 0 F =
90 89 iftrued F oField if y | y F 1 F = 0 F = 0 sup y | y F 1 F = 0 F < = 0
91 16 90 eqtrd F oField od F 1 F = 0
92 4 91 eqtr3id F oField chr F = 0