Metamath Proof Explorer


Theorem ofmulrt

Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ofmulrt A V F : A G : A F × f G -1 0 = F -1 0 G -1 0

Proof

Step Hyp Ref Expression
1 simp2 A V F : A G : A F : A
2 1 ffnd A V F : A G : A F Fn A
3 simp3 A V F : A G : A G : A
4 3 ffnd A V F : A G : A G Fn A
5 simp1 A V F : A G : A A V
6 inidm A A = A
7 eqidd A V F : A G : A x A F x = F x
8 eqidd A V F : A G : A x A G x = G x
9 2 4 5 5 6 7 8 ofval A V F : A G : A x A F × f G x = F x G x
10 9 eqeq1d A V F : A G : A x A F × f G x = 0 F x G x = 0
11 1 ffvelrnda A V F : A G : A x A F x
12 3 ffvelrnda A V F : A G : A x A G x
13 11 12 mul0ord A V F : A G : A x A F x G x = 0 F x = 0 G x = 0
14 10 13 bitrd A V F : A G : A x A F × f G x = 0 F x = 0 G x = 0
15 14 pm5.32da A V F : A G : A x A F × f G x = 0 x A F x = 0 G x = 0
16 2 4 5 5 6 offn A V F : A G : A F × f G Fn A
17 fniniseg F × f G Fn A x F × f G -1 0 x A F × f G x = 0
18 16 17 syl A V F : A G : A x F × f G -1 0 x A F × f G x = 0
19 fniniseg F Fn A x F -1 0 x A F x = 0
20 2 19 syl A V F : A G : A x F -1 0 x A F x = 0
21 fniniseg G Fn A x G -1 0 x A G x = 0
22 4 21 syl A V F : A G : A x G -1 0 x A G x = 0
23 20 22 orbi12d A V F : A G : A x F -1 0 x G -1 0 x A F x = 0 x A G x = 0
24 elun x F -1 0 G -1 0 x F -1 0 x G -1 0
25 andi x A F x = 0 G x = 0 x A F x = 0 x A G x = 0
26 23 24 25 3bitr4g A V F : A G : A x F -1 0 G -1 0 x A F x = 0 G x = 0
27 15 18 26 3bitr4d A V F : A G : A x F × f G -1 0 x F -1 0 G -1 0
28 27 eqrdv A V F : A G : A F × f G -1 0 = F -1 0 G -1 0