Metamath Proof Explorer


Theorem ofnegsub

Description: Function analogue of negsub . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion ofnegsub AVF:AG:AF+fA×1×fG=FfG

Proof

Step Hyp Ref Expression
1 simp1 AVF:AG:AAV
2 simp2 AVF:AG:AF:A
3 2 ffnd AVF:AG:AFFnA
4 ax-1cn 1
5 4 negcli 1
6 fnconstg 1A×1FnA
7 5 6 mp1i AVF:AG:AA×1FnA
8 simp3 AVF:AG:AG:A
9 8 ffnd AVF:AG:AGFnA
10 inidm AA=A
11 7 9 1 1 10 offn AVF:AG:AA×1×fGFnA
12 3 9 1 1 10 offn AVF:AG:AFfGFnA
13 eqidd AVF:AG:AxAFx=Fx
14 5 a1i AVF:AG:A1
15 eqidd AVF:AG:AxAGx=Gx
16 1 14 9 15 ofc1 AVF:AG:AxAA×1×fGx=-1Gx
17 8 ffvelcdmda AVF:AG:AxAGx
18 17 mulm1d AVF:AG:AxA-1Gx=Gx
19 16 18 eqtrd AVF:AG:AxAA×1×fGx=Gx
20 2 ffvelcdmda AVF:AG:AxAFx
21 20 17 negsubd AVF:AG:AxAFx+Gx=FxGx
22 3 9 1 1 10 13 15 ofval AVF:AG:AxAFfGx=FxGx
23 21 22 eqtr4d AVF:AG:AxAFx+Gx=FfGx
24 1 3 11 12 13 19 23 offveq AVF:AG:AF+fA×1×fG=FfG