Metamath Proof Explorer


Theorem ofnegsub

Description: Function analogue of negsub . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion ofnegsub A V F : A G : A F + f A × 1 × f G = F f G

Proof

Step Hyp Ref Expression
1 simp1 A V F : A G : A A V
2 simp2 A V F : A G : A F : A
3 2 ffnd A V F : A G : A F Fn A
4 ax-1cn 1
5 4 negcli 1
6 fnconstg 1 A × 1 Fn A
7 5 6 mp1i A V F : A G : A A × 1 Fn A
8 simp3 A V F : A G : A G : A
9 8 ffnd A V F : A G : A G Fn A
10 inidm A A = A
11 7 9 1 1 10 offn A V F : A G : A A × 1 × f G Fn A
12 3 9 1 1 10 offn A V F : A G : A F f G Fn A
13 eqidd A V F : A G : A x A F x = F x
14 5 a1i A V F : A G : A 1
15 eqidd A V F : A G : A x A G x = G x
16 1 14 9 15 ofc1 A V F : A G : A x A A × 1 × f G x = -1 G x
17 8 ffvelrnda A V F : A G : A x A G x
18 17 mulm1d A V F : A G : A x A -1 G x = G x
19 16 18 eqtrd A V F : A G : A x A A × 1 × f G x = G x
20 2 ffvelrnda A V F : A G : A x A F x
21 20 17 negsubd A V F : A G : A x A F x + G x = F x G x
22 3 9 1 1 10 13 15 ofval A V F : A G : A x A F f G x = F x G x
23 21 22 eqtr4d A V F : A G : A x A F x + G x = F f G x
24 1 3 11 12 13 19 23 offveq A V F : A G : A F + f A × 1 × f G = F f G