Metamath Proof Explorer


Theorem ofoprabco

Description: Function operation as a composition with an operation. (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Hypotheses ofoprabco.1 _ a M
ofoprabco.2 φ F : A B
ofoprabco.3 φ G : A C
ofoprabco.4 φ A V
ofoprabco.5 φ M = a A F a G a
ofoprabco.6 φ N = x B , y C x R y
Assertion ofoprabco φ F R f G = N M

Proof

Step Hyp Ref Expression
1 ofoprabco.1 _ a M
2 ofoprabco.2 φ F : A B
3 ofoprabco.3 φ G : A C
4 ofoprabco.4 φ A V
5 ofoprabco.5 φ M = a A F a G a
6 ofoprabco.6 φ N = x B , y C x R y
7 2 ffvelrnda φ a A F a B
8 3 ffvelrnda φ a A G a C
9 opelxpi F a B G a C F a G a B × C
10 7 8 9 syl2anc φ a A F a G a B × C
11 5 10 fvmpt2d φ a A M a = F a G a
12 11 fveq2d φ a A N M a = N F a G a
13 df-ov F a N G a = N F a G a
14 13 a1i φ a A F a N G a = N F a G a
15 6 adantr φ a A N = x B , y C x R y
16 simprl φ a A x = F a y = G a x = F a
17 simprr φ a A x = F a y = G a y = G a
18 16 17 oveq12d φ a A x = F a y = G a x R y = F a R G a
19 ovexd φ a A F a R G a V
20 15 18 7 8 19 ovmpod φ a A F a N G a = F a R G a
21 12 14 20 3eqtr2d φ a A N M a = F a R G a
22 21 mpteq2dva φ a A N M a = a A F a R G a
23 ovex x R y V
24 23 rgen2w x B y C x R y V
25 eqid x B , y C x R y = x B , y C x R y
26 25 fmpo x B y C x R y V x B , y C x R y : B × C V
27 24 26 mpbi x B , y C x R y : B × C V
28 6 feq1d φ N : B × C V x B , y C x R y : B × C V
29 27 28 mpbiri φ N : B × C V
30 5 10 fmpt3d φ M : A B × C
31 1 fcomptf N : B × C V M : A B × C N M = a A N M a
32 29 30 31 syl2anc φ N M = a A N M a
33 2 feqmptd φ F = a A F a
34 3 feqmptd φ G = a A G a
35 4 7 8 33 34 offval2 φ F R f G = a A F a R G a
36 22 32 35 3eqtr4rd φ F R f G = N M