Step |
Hyp |
Ref |
Expression |
1 |
|
ofpreima.1 |
|
2 |
|
ofpreima.2 |
|
3 |
|
ofpreima.3 |
|
4 |
|
ofpreima.4 |
|
5 |
1 2 3 4
|
ofpreima |
|
6 |
|
inundif |
|
7 |
|
iuneq1 |
|
8 |
6 7
|
ax-mp |
|
9 |
|
iunxun |
|
10 |
8 9
|
eqtr3i |
|
11 |
5 10
|
eqtrdi |
|
12 |
|
simpr |
|
13 |
12
|
eldifbd |
|
14 |
|
cnvimass |
|
15 |
4
|
fndmd |
|
16 |
14 15
|
sseqtrid |
|
17 |
16
|
ssdifssd |
|
18 |
17
|
sselda |
|
19 |
|
1st2nd2 |
|
20 |
|
elxp6 |
|
21 |
20
|
simplbi2 |
|
22 |
18 19 21
|
3syl |
|
23 |
13 22
|
mtod |
|
24 |
|
ianor |
|
25 |
23 24
|
sylib |
|
26 |
|
disjsn |
|
27 |
|
disjsn |
|
28 |
26 27
|
orbi12i |
|
29 |
25 28
|
sylibr |
|
30 |
1
|
ffnd |
|
31 |
|
dffn3 |
|
32 |
30 31
|
sylib |
|
33 |
2
|
ffnd |
|
34 |
|
dffn3 |
|
35 |
33 34
|
sylib |
|
36 |
35
|
adantr |
|
37 |
|
fimacnvdisj |
|
38 |
|
ineq1 |
|
39 |
|
0in |
|
40 |
38 39
|
eqtrdi |
|
41 |
37 40
|
syl |
|
42 |
41
|
ex |
|
43 |
|
fimacnvdisj |
|
44 |
|
ineq2 |
|
45 |
|
in0 |
|
46 |
44 45
|
eqtrdi |
|
47 |
43 46
|
syl |
|
48 |
47
|
ex |
|
49 |
42 48
|
jaao |
|
50 |
32 36 49
|
syl2an2r |
|
51 |
29 50
|
mpd |
|
52 |
51
|
iuneq2dv |
|
53 |
|
iun0 |
|
54 |
52 53
|
eqtrdi |
|
55 |
54
|
uneq2d |
|
56 |
|
un0 |
|
57 |
55 56
|
eqtrdi |
|
58 |
11 57
|
eqtrd |
|